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ABSTRACT

This thesis is concerned with the interaction of amplitude-modulated (AM)

optical fields with various nonlinear systems. An experimental and theoretical

analysis of three distinct nonlinear systems is treated: t:wo-level atoms inter-

acting with a 100% AM field: a four-level laser amplifier with an AM pump

intensity: a multimode dye laser with an AM pump intensity.

A 100% AM field is the limiting case of strong modulation in which the

energy at the carrier frequency is completely supressed, and only the modulation

sidebands remain. The interaction of such an optical field with an ensemble

of radiatively broadened two-level atoms (an optically-pumped sodium atomic

beam is used) yields a complicated series of parametric resonances when both

the Rabi frequency and the modulation frequency are large compared with the

atomic-transition linewidth. The time-averaged fluorescence, and therefore, the

absorption of energy exhibits parametric-resonant enhancement whenever the

modulation frequency is equal to a subharmonic of the Rabi frequency.

Population oscillations in a multilevel laser amplifier are studied using weak

amplitude-modulation spectroscopy. Two laser fields are applied to a four level

laser amplifier (alexandrite is used as the amplifier). The intensity of the laser

tuned to the pump-transition frequency is weakly modulated, while the mod-

ulated gain experienced by a second laser, tuned to the inverted transition, is

measured. Amplitude-modulation spectroscopy is used to determine the tem-

perature increase due to thermal relaxations within the crystal.

The near-threshold behavior of multimode cw dye lasers with an AM pump

intensity is studied for several dye-laser cavity configurations. The intensity of

v



the argon pump beam is weakly modulated and the modulation spectrum of

the laser intensity is studied. Critical slowing down of the response of the laser

intensity is observed. The behavior of multimode lasers are compared with the

predictions of single-mode four-level laser theory. Also, the modulation spectrum

of the fluorescent intensity is studied. The phenomenon of non-adiabatic gain

clamping is discussed in relation to the results. Furthermore, the absorption

spectrum of the modulation in the intensity of the argon pump beam is studied

to complete a modulation-energy-balance analysis.
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Chapter 1

INTRODUCTION

One of the most effective tools in optical physics is linear spectroscopy. An

atomic or molecular system is prepared as a sample and an optical excitation

is applied to the sample. Sometimes a narrowband excitation is used and as

its frequency is swept an absorption spectrum is obtained. In other cases, the

excitation is constant and the spectrum of the scattered radiation is measured.

These techniques provide information such as the energy difference between the

states, or energy levels, of the system and the bandwidth of the transitions

between these levels. The lifetime of the population in these levels can also

be determined by rapidly extinguishing the optical excitation and monitoring

the decay of the fluorescence from the sample. It is interesting that while the

population lifetime can be determined via linear spectroscopic techniques, the

very existence of this finite lifetime is the cause of nonlinear saturation of the

absorption of light.

These linear techniques involve the interaction of single quanta of optical

light with the medium. When the excitation is strong, nonlinear effects begin to



2

appear. For instance, since the population lifetime T, is finite, the absorption of

radiation by the medium cannot increase linearly with the excitation strength.

Eventually, all the population in the medium will be excited to the upper levels

and fu.ther absorption of the excitation is impossible. Now, if a second resonant

field is applied, it will experience decreased absorption since the medium is

saturated. The presence of a strong excitation modifies the apparent properties

of the medium. This effect is the basis of many nonlinear optical interactions.

Early studies of nonlinear optical interactions involved a single strong field

and a weak tunable probe field. Mollowl and Haroche 2 used a third-order per-

turbation theory to predict that when a weak probe field is detuned from a

strong resonant field by the Stark-shift or Rabi frequency of the strong field,

the probe can experience induced gain even in the absence of a time-averaged

population inversion. Ezekiel3 carried out an experiment using atomic sodium

to verify these theoretical results. In this experiment a sodium atomic beam was

excited by a strong field supplied by a stabilized dye laser. A second dye laser

was used as a weak probe field to probe the gain induced by the strong field.

This experiment was perhaps the first two-level atom pump-probe experiment.

In a later work Sargent Ct al.4 described how amplitude modulation could be

used to produce a tunable set of probe fields symmetric about a strong saturat-

ing optical field. In these works a strong field saturates an optical transition.

The strong field is then weakly amplitude modulated. The weak sidebands are

used to probe the saturated absorption spectrum of the atomic system. This

theoretical work marked the birth of amplitude modulation (AM) spectroscopy.

To better understand the interaction of a modulated optical field with a

nonlinear optical system I will treat the simple case of an undamped two-level

atom driven by a resonant AM optical field. This type of interaction can be
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adequately described by the optical Bloch equations. In the absence of damping

and for resonant excitation the Bloch equations redu .e to the equation for the

in-quadrature dipole moment

V = ,KE(t)w, (1.1c)

and the equation for the atomic inversion

tw = -KE(t)v, (1.1b)

where the dipole coupling constant K is given by

K= 2d/h, (1.2)

where d is the dipole-moment matrix element and h is Planck's constant divided

by 27r. These equations can be integrated to obtain the solution for the in-

quadrature polarization

v(t) = -sin [j ,E(t)dt] , (1.3a)

and the solution for the atomic inversion

w(t) = -cos [j IcE()dt] (1.3b)

Now, we can represent an arbitrary AM field as

E(t) = Eo + 2Ecos(&;t), (1.4)

where EO is the dc compnent of the driving field and the amplitude of the modu-

lation sidebands is El. When the expression for the modulated field in Eq. (1.4)

is substituted into Eqs. (1.3a-b) the response of the system consists of harmonic
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overtones of the modulation frequency 6w. To demonstrate this principle let us

consider the case of 100% amplitude modulation (this is the subject of chapter

2). In this limiting case of strong modulation, the dc component of the field [E0

in Eq. (1.4)] is zero. The solutions can now be rewritten as

v(t) = -sin [msin(6wt)], (1.5a)

and

w(f' = -cos [msin(bwt)], (1.5b)

where the modulation index m is

2K E1m= 6w (1.6)
bw

Using some trigonometric and Bessel-function identities Eqs. (1.5a-b) can be

rewritten as
0C

v(t) = -2ZEJ2 n-(m)sin (2n - l)bwt], (1.7a)
n=1

for the in-quadrature polarization and

w(t) = -Jo(m) - 2 Z J2n(m)sin(2nwt), (1.7b)
n=1

for the atomic inversion. It is evident from these solutions that the response

of a two-level atom to a 100% AM field consists of harmonic overtones of the

modulation frequency 6w. This phenomenon typical of interactions of nonlinear

systems with modulated optical fields.

In this thesis I apply amplitude modulation spectroscopy to study three

distinct types of nonlinear interactions: a two-level atom interacting with 100%

amplitude-modulated fields; the interaction of multiple amplitude-modulated

driving fields with a multi-level molecular system; the interaction of a dye-

laser system with an amplitude-modulated pump intensity. In this chapter I
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will describe the research contained in each chapter as well as provide a brief

background for each project.

In chapter two of this thesis I treat the limiting case of strong modulation

interactions: the interaction of a 100% AM field with a two-level atom. The

physics behind this work is an extension of the earlier works of Mollow, Haroche,

and Ezekiel which I have already discussed. In these works a weak probe field

experiences gain in its absorption spectrum as it is detuned in frequency from

a strong saturating field by the strong-field Rabi frequency. As long as the

probe fields are weak, the physics of this interaction can be adequately described

by a third-order perturbation theory. Perhaps the most general self-consistent

problem which can be described by a third-order theory is that of four-wave

mixing. It is therefore important to mention that Boyd et al.5 showed that an

enhancement in gain occurs in degenerate four-wave mixing when the conjugate

beams are detuned from the pump beams by the pump-beam Rabi frequency.

These results were later confirmed by Harter et al.6 '7 using two pulsed dye lasers

and a sodium cell. In a later work Gruneisen et al.8 repeated these experiments

in a sodium cell using a pair of cw dye lasers. The3e experiments and the one

by Ezekiel3 confirm the physics of the pump-probe interactions quite well.

This problem can also be described using a modulation formalism. Hillman

et al.9 and Kramer et al.1° showed that the interaction of trong field and a

single sideband with a two-level atomic system can be described as a linear

combination of weak AM and frequency modulation (FM). It is also "natural"

to describe the interaction in this manner. They show that if an arbitrary linear

combination of AM and FM modes are allowed to interact in a self-consistent

manner with a two level atomic system the amounts of AM and FM will adjust

themselves to a unique ratio depending on the intensity of the strong field and
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the detuning parameter. Therefore, it is basically correct to describe the pump-

probe problem in a modulation formalism.

An obvious extension of these single strong-field experiments are interac-

tions involving two or more strong fields with a two level system. The theoretical

predictions of this multiple strong-field interaction are much more complicated

than the single strong-field interactions. Not only is there a resonance in the

absorption spectrum of the sidebands when they are detuned by the Rabi fre-

quency but there are subharmonic resonances whenever the frequency separation

is a submultiple of the Rabi frequency, There have been two noteworthy experi-

ments of this kind. The first experiment by Bonch-Breuvich et al. was carried

out using Zeeman-split atomic Cadmium. This experiment involved two strong

rf fields tuned near resonance. One field was held at a fixed frequency while the

other field was tuned in order to obtain an absorption spectrum of the two-field

state. A series of subharmonic resonances were observed. The experimental

results were quite extraordinary, although the system they used was largely

undamped. In a later experiment, Thomann carried out a strong-modulation

experiment using atomic sodium and a stabilized dye laser modulated by an

electro-optic modulator. In this experiment a modulation depth of 0.65 was

obtained. The Rabi resonance and two subharmonic resonances were observed.

In chapter 2 1 extend the work in the area of strong-field large modulation

depth experiments. We have performed an experiment in atomic sodium using

a 100% AM field. The field state is produced from a stabilized dye laser by up-

shifting the frequency of a portion of the dye-laser beam using an acousto-optic

modulator and recombining the upshifted portion with the unshifted portion.

This experiment is, to our knowledge, the first realization of a 100% AM interac-

tion at optical frequencies. The results of the experiment confirm the existence
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of subharmonic resonances in this bichromatic interaction. Furthermore, I dis-

cuss various techniques of measuring these resonances. I also attempt to shed

light on the physics of this interaction by discussing the dynamic trajectories of

the atomic variables during such an interaction. Finally, I extend the concept

of modulation to include multiple harmonics of the modulation frequency to the

limit of an interaction with a mode-locked pulse train with the two-level system.

In chapter 3 we will turn our attention to a multilevel atomic system. I treat

the case of a multilevel laser amplifier interacting with multiple driving fields. I

show how weak modulation techniques can be used in a signal-limited detection

scheme to determine relaxation rates in multilevel systems. This research is

an extension of work by Sargent et al." and work performed at the Institute of

Optics."" In these works, collisionally broadened saturable absorbing media are

studied. In the presence of a weakly modulated saturating field these absorbers

reveal a hole in the absorption spectrum of the modulation sidebands at zero

modulation frequency. The physics behind this effect is that when the system

can follow the modulated excitation it becomes a less efficient absorber of the

modulation. Therefore, the measurement of this 1/T hole in the absorption

spectrum of the modulation sidebands is an indication of the ability of the

atomic system to undergo population oscillations. These previous works involve

a single optical field which is weakly modulated. The obvious extension of these

works is to study the propagation of modulation in these multilevel systems

when optical fields are present at more than one transition.

In chapter 3 1 develop a theory to describe the response of the population

in the levels of a canonical four-level laser model to a modulation of either the

field tuned to the pump transition of the field tuned to the inverted transition. I

derive an expression for the modulated gain experienced by a probe laser tuned
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to the inverted transition due to a modulated pump intensity. Although the

pump and the probe lasers are incoherent with respect to each other and the

transitions which they address are not directly connected, there is an exchange

of modulation energy between these fields via population oscillations. I explain

how such modulation measurements can be employed in laser-material testing

to uncover any slow, hidden decay rates. I outline an experimental test of these

predictions which we carried out using alexandrite, pumped by two dye lasers

tuned to different transitions within the alexandrite system. After the data is

fit using the canonical four-level theory, I also fit the same data using a more

detailed energy-level model of the alexandrite system. Using this second model I

arrive at an expression for the temperature change within the interaction region

of the crystal due to heating by the incomplete conversion of pump photons into

spontaneous and stimulated photons at the inverted-transition frequency.

In chapter 4 I apply AM techniques to a laser system operating near the

first threshold. This research is an extension of the work in chapter 3; the

multilevel system is now within an operating laser. The goal of this final chapter

is to develop an understanding of the complex dynamics which govern a laser's

behavior near the lasing threshold. In particular, this chapter focuses on the

effects of pump fluctuations on the amplitude stability of the laser.

The idea for the research described in chapter 4 came out of recent work

describing a delayed bifurcation at the first threshold of a laser. 1 1'- 14 As the loss

or the gain of a laser is swept through the threshold value very slowly, the laser

intensity follows the behavior predicted by the steady-state theory. However,

when the sweep rate is increased the turn-on of the laser is delayed past the

critical point until the intensity in the cavity can properly build up. This delay

in the turn on is a delayed bifurcation. A recent experiment carried out with an
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argon-ion laser, by modulating the intracavity loss, confirms these predictions.

As the laser is brought back to threshold from the on-state the turn-off of the

laser intensity also experiences a delay. The resulting dynamic hysteresis loop

increases in area as the sweep rate is increased. The surprising thing about the

existence of this slow behavior is that the sweep rate which produces this loop

is orders of magnitude slower than the atomic decay rates or the cavity decay

rates alone would dictate. This slow behavior in the laser is a manifestation of

the effects of critical slowing down.

To better understand these effects, we carried out similar experiments in

our own laboratory. Using ar acousto-optic modulator we applied a swept pump

parameter to one of our home-built dye lasers. We observed the delayed bifur-

cation in the output power of the dye laser. Furthermore, we monitored the

fluorescence emitted from the interaction region of the gain medium. The fluo-

rescent intensity seemed to overshoot the on-state just as the laser intensity did.

At this point we decided that our experience with AM spectroscopy would help

in studying these dynamics.

Rather than applying a swept pump parameter, we hold the average pump

parameter fixed and apply a weak amplitude modulation of the pump inten-

sity. Then, the first-harmonic response of the dye laser intensity and the first-

harmonic response of the fluorescent intensity are monitored as a function of

modulation frequency using a lock-in amplifier. Our techniques are similar to a

previous experiment by Yu et al." in which the power spectrum of the intensity

of a dye-laser was monitored at several pump parameters. The transmission

of fluctuations from the pump intensity to the dye-laser intensity was found to

increase in bandwidth as the pump parameter was increased. Our experiments

with an applied modulation allow us the ability to perform in-phase and in-
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quadrature detection. Furthermore, we can study the fluorescent intensity since

the lock-in detection method offers superior signal-to-noise characteristics.

In chapter 4 1 derive an expression for the response of the laser intensity and

the excited-state population to a weakly amplitude-modulated pump intensity

in a four-level single-mode rate-equation model. In a series of experiments with

multimode lasers I demonstrate that this single-mode theory is adequate in

describing the behavior of the total intensity of extremely multimode lasers

subjected to a weakly modulated pump intensity. In these experiments we used

lock-in detection to determine the in-phase and in-quadrature first-harmonic

response of the laser intensity and the intensity of the fluorescence emitted from

the interaction region of the gain medium of the laser (the fluorescent intensity is

directly proportional to the excited-state population). The laser and fluorescent

intensities are the two possible output ports of the modulation energy from the

laser system. I show that an energy balance is not possible from consideration of

these two ports alone. Therefore, we have considered the third port; we measure

the absorption of modulation energy from the pump by the atoms in the gain

medium of the laser. The modulation in the transmitted pump-beam intensity

is monitored as a function of frequency. I show that the spectral response of

the population induces a corresponding change in the ability of the atoms in the

gain medium to absorb modulation energy from the pump.

The goal of this thesis is to provide an explanation of modulation interac-

tions in various nonlinear optical systems. I present an account of experimental

work performed in a variety of systems: two-level atom; multi-level laser ampli-

fier; and finally a laser system. In each of these systems modulation interactions

are used to perform a frequency domain measurement of some systematic time-

constant or parametric interaction.
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Chapter 2

A 100% AMPLITUDE MODULATED LASER BEAM

INTERACTING WITH A TWO LEVEL ATOM

A. Introduction

The subject of this chapter is the interaction of a 100% amplitude-modulated

(AM) optical field with a two-level atomic system. A 100% AM field is the limit-

ing case of strong modulation in which all the energy at the carrier frequency has

been displaced in the modulation process into the modulation sidebands. The

field consists only of the modulation sidebands which are separated by twice the

modulation frequency. In this chapter I describe an experimental and theoretical

study of this problem. In the experiment, a sodium atomic beam is prepared as

the atomic medium, and a frequency-stabilized dye-laser is used as the source

of optical radiation.

The work discussed in this chapter is an extension of earlier work involving

a two-level atom resonantly driven by a single strong field with one or more

tunable probe fields. In the earliest of this work Mollowi and Haroche 2 each

used a third-order perturbation theory to predict that when a weak probe field

14
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is detuned from a strong resonant field by the Stark-shift or Rabi frequency of

the strong field, the probe field can experience induced gain even in the absence

of a time-averaged inversion. Wu et al.3 performed an experiment to verify these

predictions. An intense laser beam from the output of a frequency-stabilized dye

laser was used to excite two-level atoms prepared in a sodium atomic beam while

a second laser beam was used to probe the modified absorption spectrum. The

experimental results were in good agreement with the theoretical predictions

for this problem. In a later experiment, Gruneisen et al.4 performed a similar

experiment involving a sodium vapor cell and two stabilized dye lasers. In this

experiment the effect of varying the collisional dephasing rate was studied.

As long as the probe fields are weak, the physics of the interaction can

be adequately treated by a third-order perturbation theory. Perhaps the most

general self-consistent problem which can be accurately described by a third-

order theory is that of four-wave mixing. It is therefore important to mention

that Boyd et al.5 showed that an enhancement in gain occurs in nearly degen-

erate four-wave mixing when the conjugate beams are detuned from the pump

beam by the pump-beam Rabi frequency. These results were later confirmed in

experiments by Harter et al.6' using a pulsed dye laser incident on a sodium

cell.

These pump-probe problems can also be described using a modulation for-

malism. Hillman et al.' and Kramer et a. showed that the interaction of a

strong field and a single sideband with a two-level atomic system can be de-

scribed as a linear combination of weak AM and frequency modulation (FM).

It is also "natural" to describe the interaction in this manner. They show that

if an arbitrary linear combination of AM and FM modes are allowed to interact

in a self-consistent manner with a two-level atomic system the amounts of AM
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and FM will adjust themselves to a unique ratio depending on the intensity of

the strong field and the detuning parameter. Therefore, it is basically correct

to describe the pump-probe problem in a modulation formalism.

In contrast to these studies of weak modulation interactions, some re-

searchers have focused on interactions in which the modulation amplitudes ap-

plied to the resonant driving fields are large. 10-2 1 In these interactions the mod-

ulation sidebands alter the atomic dynamics substantially from the single field

dynamic behavior. Although the treatment of strong-modulation interactions

is by no means complete, there has been experimental work in this area.1 0 ,1 2 ,1 6

These strong-modulation experiments yield different results from those seen in

weak-modulation experiments. The atomic variables exhibit resonant behavior

when the modulation frequency is approximately equal to the Rabi frequency or

any subharmonic of the Rabi frequency. Bonch-Breuvich et al." performed the

earliest such experiment with two strong rf fields tuned to a Zeeman resonance

in cadmium. One rf field was held at a constant frequency while the frequency

of the other field was tuned about the resonance to obtain an absorption spec-

trum. The absorption spectrum of the rf field exhibited several subharmonic

resonances. This experiment is extremely relevant to the present work; however,

a distinct difference exists in that spontaneous emission effects are insignificant

in the rf regime. Thomann 12 performed a three-field experiment at the sodium

D 2 line resonance. The field was produced by strongly modulating the intensity

of a laser beam; the Rabi frequency was varied while the modulation frequency

was held fixed. A sinusoidally varying rf voltage was supplied to the electro-optic

modulator. This rf modulation signal was chopped at an audio frequency and

the fluorescence signal was analyzed using a lock-in amplifier. In this way the

collected signal was equal to the difference between the response of the atoms



17

to single-frequency excitation and the response of the atoms to the modulated

excitation. The data revealed the subharmonic resonances as predicted by the

theory. However, the fluorescent intensity decreased at each resonance in con-

trast to the two-field experiment in which the fluorescent intensity increases at

the resonances.

The field of laser instabilities has brought renewed interest to these modu-

lation problems since the interaction of modulated fields with atomic media has

been related to various laser instabilities.2 1- 2' Feldman and Feld 2 1 show that a

single-mode standing-wave laser field interacting with a Doppler broadened gain

medium is similar to the 100% AM problem. The standing-wave bidirectionally

propagating field is resonant with two symmetrically detuned velocity groups, re-

sulting in a bichromatic excitation. Under these circumstances the gain medium

will experience resonances in its laser spectrum due to the subharmonic Rabi

resonances.

It has been observed that lasers can become unstable to self-modulation

caused by the ac Stark effect. Perhaps the earliest predicted laser instabil-

ity due to a Stark-frequency or Rabi frequency modulation was predicted by

Risken et al." A single-mode laser was predicted to become unstable when the

Rabi frequency reached a threshold value depending on the laser's characteris-

tic relaxation rate. Instabilities of this type have been observed in far-infrared

(FIR) lasers. Harrison et al.23 show that due to the Stark-splitting of the upper

lasing level by the pumping laser, an FIR laser becomes unstable to single mode

operation. Although the interaction with the pump and the secondary laser in

the FIR laser instability is a bit different from the situation treated by Risken

and Numnuedal, the physics behind these instabilities is similar.

Another multichromatic laser instability has been observed in a series of
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experiments at the University of Rochester. 2 4 - 27 Hillman ej al 24 found that

when the pump power of a dye laser is increased beyond 1.5 times or so above

the threshold aiiount, the spectrum of the dye-laser becomes unstable for single

frequency operation. The spectrum of the dye laser laser bifurcates into two

frequency components. This instability illustrates the significance of multifre-

quency interactions in laser systems.

With the renewed interest in these strong modulation interactions has come

new approaches to understanding the physics. Silverans et al."' performed an

experimental study of strong modulation for short interaction times. The phase

of the modulation is a critical parameter in such interactions. These results were

theoretically analyzed by Eberly et al." Agarwal showed that the subharmonic

resonances appear in the Raman effect 18 and that generation of squeezed states

of the phase of the electronagnetic field is possible in multiwave mixing at

subharmonic Rabi resonances.19 Recently, Ruyten 2' has studied the behavior of

the various harmonic components of the atomic response to a 100% AM optical

excitation.

In this chapter I describe our contribution to the research in this area. I

describe an experimental and theoretical study we performed to understand the

interaction of a 100% AM optical excitation with an ensemble of homogeneously

broadened two-level atoms. I will present a brief theoretical treatment of the

problem and describe some numerical calculations we performed to understand

the behavior of the atomic variables in such an interaction. Furthermore, I

will present a comparison between the interaction of a sinusoidally amplitude-

modulated field and a pulsed amplitude-modulated field with two-level atoms.
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B. Theoretical review

The response of an atomic system can be characterized, in part, by the rate

at which it absorbs, or scatters, energy from a resonant laser beam. I employ

a calculation developed by Hillman et al.25 to calculate the rate of absorption

from the optical Bloch equation

u = - u/T 2 - Av, (2.1a)

i' =Au - v/T 2 + rE(t)w, (2.1b)

tv = - (w + 1)/TI - KE(t)v, (2.1c)

where u and v are the in-phase and in-quadrature dipole moments, respectively,

and w is the atomic inversion. The detuning is A and 1/T2 and 11T1 are the po-

larization and population decay rates, respectively. The dipole-moment coupling

constant K is given by

= 2d/h, (2.2)

where d is the dipole-moment matrix element and h is Planck's constant divided

by 27r. We are interested in the response of an atom to a 100% AM excitation.

In this case the electric field amplitude can be written as

E(t) = 2E 1 cos(6wt), (2.3)

where &,w is the modulation frequency and the amplitude of each component of

the electric field is El.

According to Floquet's theorem, the stationary-state response of the atomic

variables can be expanded in a Fourier series of tlF- modulation frequency 6w.

The in-phase and in-quadrature components of the atomic polarization and the

atomic inversion can be written as
00

f) E U exp(0n0?t), (2.4a)
n=-oo
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00

V. = v, exp(in6wt), (2.4b)

"=00

w(t) = E wnexp(inbwt), (2 .4c)
n=-0

respectively. The nth-harmonic components of the in-phase and in-quadrature

dipole moments and of the atomic inversion are denoted by u,, v,, and w,

respectively. When we substitute the expansions given in Eqs. (2.4a-2.4c) into

the Bloch equations, Eqs. (2.1a-2.1c), we get a set of recurrence relations for

the harmonic components of the atomic variables

(1 + in6wT2)un = - AT 2v., (2.5a)

(1 + in6wT2 )v. =ATu. + KEIT 2 (w.+l + wn-l), (2.5b)

(1 + inbwT)w, = - KtE1 T1(v,+ 1 + v,- 1 ) + 6 n,oweq. ( 2 .5c)

The recurrence relations for the in-phase and in-quadrature dipole moments

[Eqs. (2.5a-2.5b)] can be combined to yield a single recurrence relation

1 + inbwT + +nT2 J = KEE1 T2 (wn+1 + W.]), (2.6)
1 ~ 1 + inbwT2 1

Now we can combine the information in Eq. (2.5c) and Eq. (2.6) to yield the

ratio of the first-harmonic component of the in-quadrature dipole moment to

the zeroth-harmonic (time-averaged) component of the inversion in the form of

a continued fraction:

-- = 
(2.7)

WO B, +B 2 +

B3 + b+

where the single-field intensity is

I, = (,KE,) 2TT, (2.8)
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and the coefficients denoted by B,, are

(AT 2 )2

(

Bn = 1 + in6wT2 + 1 + inbwT2 ' (2.9a)

for odd n and

B, = 1 + irn6wT1 , (2.9b)

for even n. Note, that the single-field intensity is naturally expressed in di-

mensionless form in Eq. (2.7). 1 will use the dimensionless intensity as well as

the dimensionless modulation frequency, 6wT 2 , and the dimensionless detuning,

AT 2 , throughout.

We can solve for the time-averaged component of the atomic inversion, wo,

in terms of the continued fraction and then write the excited-state population

as

I1 Re{v 1/wj
= 1 + 2I1 Re{vi/wo} (2.10)

We are ultimately interested in the absorption of the AM field. The average

rate at which a two-level atom scatters light in the form of resonance fluores-

cence is equal to the time-averaged absorption. The fluorescent emission rate

is proportional to the excited-state population. Consequently, for the case of

a 100% AM excitation of a two-level atom, the rate of absorption of energy is

proportional to the time-averaged component of the excited-state population.

Therefore, we can measure the time-averaged absorption of modulation energy

and the excited-state atomic population by monitoring the time-averaged fluo-

rescent intensity.

I have plotted the excited-state population given by Eq. (2.10) in Figs.

2.1(a) and 2.1(b). In Fig. 2.1(a) I plot the time-averaged excited-state pop-

ulation for a fixed Rabi frequency as a function of the modulation frequency,
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wT 2 . This curve is quite complicated, and it shows several resonances in the

bsorption spectrum of the fields. To understand these peaks it is helpful to

solve the problem on resonance in the absence of damping as I did in chapter

1 in Eqs. (1.7a-1.7b). In this case we obtain an analytic solution in which the

time-averaged response of the population inversion is equal to -Jo(2E 1 /Sw).

When we numerically pick off the position of each peak from Fig. 2.1(a) we find

that the peaks occur whenever the factor Jo(2rE/6w) is equal to zero. The

outermost peaks in Fig. 2.1(a) correspond to the first zero of JO. The next

peaks, at smaller values of bwT 2, correspond to the second zero of Jo and are

the first subharmonic resonances. In the limit of large arguments, x, the zeros

of Jo(x) become equally spaced versus x. It is in this limit that the resonances

are best described as subharmonic resonances.

In Fig. 2.1(b) the time-averaged population of the excited-state is plotted

versus the time-averaged dimensionless intensity 2(KEi )2 T1 T2 for a fixed modu-

lation frequency of three atomic linewidths (bwT 2 = 3). This is the form of our

raw data. The resonances appear as enhancements in the absorption embedded

in the usual single-field saturation curve. As the intensity is increased from zero,

we approach the first-order resonance. The second resonance, occuring at higher

intensity, is the first subharmonic resonance. The order of the subharmonic reso-

nances increases as we look to higher dimensionless intensities. These resonances

occur only when the interaction is strong, meaning the Rabi frequency, KE1 , ex-

ceeds the natural linewidth of the transition and the modulation depth is large

as is the case of a 100% amplitude modulation.

C. The Dynamic behavior of the atomic variables

The dynamic behavior of the atomic variables also reflects the subharmonic
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Fig. 2.1(a) Time-averaged excited-state population as a function of the
modulation frequency, &oT2. The dimensionless Rabi frequency is held fixed at
YEIT 2=10. and the dimensionless modulation frequency &.T2 is varied to observe

the subharmonic resonances. The detuning is zero, AT2--O.



24

I I
0.50

0.25

I

40

(b)
0.00

0 125 250
dimensionless intensity, 2(E I)2T 1T2

Fig. 2.1(b) Time-averaged excited-state population as a function of intensity.
The dimensionless modulation frequency is held fixed at WiT 2=3. and the time-

averaged dimensionless intensity 20cE,) 2TIT 2 is varied to observe the

resonances. The detuning is zero, AT2=0.
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resonant behavior of the 100% AM interaction. In Figs. 2.2(a-d), I show the

phase plots formed by the in-quadrature atomic poarization and the atomic

inversion at each of the first four resonances (on-resonance excitation is used

for the phase plots so that only the in-quadrature polarization is driven). Each

curve in Fig. 2.2 shows the trajectory followed by the atomic variables for a

complete period of the modulation. Figure 2.2(a) shows the period-one behav-

ior that occurs at the first resonance. Figure 2.2(b) shows that a second cycle

in the trajectory occurs at the second resonance, which is the first subharmonic

resonance. Figures 2.2(c) and 2.2(d) show the behavior at the third and fourth

resonances, respectively. We can compare this system to an oscillator being

driven every nth cycle of its natural frequency. The oscillator can be driven

effectively by the fundamental frequency or by any subharmonic of the funda-

mental. This subharmonic driving is effective because the system responds at

higher harmonics of the driving frequency when the driving force is large enough

to induce a nonlinearity.

In Fig. 2.3(a-d) I have plotted the dynamic behavior of the atomic vari-

ables at each of the first four anti-resonances (minima of the fluorescence-versus-

intensity response). The parameters corresponding to the local minima in Fig.

2.1(b) are used to construct these figures. The sequence of the behavior of the

atomic variables can be constructed for increasing intensity as follows: Figs.

2.2(a) - 2.3(a) - 2.2(b) - 2.3(b) - 2.2(c) - 2.3(c) - 2.2(d) - 2.3(d). The atomic

trajectory closes in on itself as the excitation strength increases. This behavior

is analogous to the behavior of a pair of vortices in the wake of a boat as they

turn inward toward one another.

The dynamic behavior depicted in the phase plots can be further examined

by calculating a histogram of this periodic behavior. The phase plots are recal-
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Fig. 2.2 Trajectories of the atomic inversion and the in-quadrature polarization.

I plot the atomic inversion versus the atomic polarization at the first four

resonances. The modulation frequency is BccT 2 = 3. In (a) the Rabi frequency

corresponds to the first resonance. In (b)-(d) the behavior at the first three

subharrnonic resonances are shown. The Rabi frequencies used in these figures
are: (a) icEIT 2 =3.9; (b) xEIT 2 =8.43; (c) KEIT 2 =13.1; (d) KEIT 2 =17.8. The

detuning for all figures is zero, AT2 = 0.
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Fig. 2.3 Trajectories of the atomic inversion and the in-quadrature polarization.

I plot the atomic inversion versus the atomic polarization at the first four anti-
resonances. The modulation frequency is BozT 2=3. In (a) the Rabi frequency

corresponds to the first anti-resonance. In (b)-(d) the behavior at the first three

subharmonic anti-resonances are shown. The Rabi frequency used in these figures
are: (a) xET 2=5.75; (b) EIT 2=10.55; (c) KiEIT 2=15.3; (d) r.EIT 2=20.03. The

detuning for all figures is zero, AT2=0.
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culated but this time with many more points in order to develop an accurate

histogram of the atomic behavior. In particular, we will examine the histogram

of the atomic inversion. The range of values that the inversion can acquire (rang-

ing from -1 to 1) is broken up into 1000 bins. The phase plot is analyzed over

an integral number of periods with many thousand points in order to construct

an histogram of the inversion. In Figs 2.4(a-d) I have plotted the histograms

for the atomic inversion corresponding to the same parameters as were used to

construct the phase plots in Figs 2.2(a-d). The first plot Fig. 2.4(a) represents

the histogram for the atomic inversion at the first resonance. The histogram

is indicative of harmonic motion which is nearly symmetrical about the point

corresponding to zero inversion. The next three histograms depict the atomic

behavior at the next three resonances. At each resonance the histogram displays

an extra set of peaks. At each successive resonance the motion of the atomic

inversion acquires an additional harmonic component.

In order to see the progression between successive resonances I have plotted

the histograms for the atomic inversion at the first four anti-resonances. These

histograms are shown in Figs 2.5(a-d). The parameters used to construct these

histograms are the same as those used to construct the phase-plots in Figs. 2.3(a-

d). The first thing to notice is that these histograms have greater extent over

the inversion axis (x-axis) than those shown in Figs. 2.4(a-d). It is interesting

that while the resonances are defined by the occurrence of local maxima of the

dc inversion, the atomic trajectory takes on its minimum extent for the same

parameters. In other words, the dc response is maximized while the ac response

is minimized. We can learn a bit more from the histogram plots in Figs. 2.5(a-

d). The origin of the subsequent peaks in the histogram plots can clearly be

seen in this sequence of graphs. While the trajectory takes on its maximum
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Fig. 2.4 Histograms of the atomic inversion of an atom subjected to 100% AM

excitation at the first four resonances. Histograms are constructed of the behavior

of the atomic inversion at the first four parameteric resonances for a modulation

frequency 8bcT 2=3. The histograms are constructed using 100000 points and the

results are normalized to 4500 occurrences. The parameters used are: (a)

KET 2 =3.9; (b) icEIT 2 =8.43; (c) KEIT 2 =13.1; (d) KEIT 2 =17.8. These

parameters are the same as those used in Fig. 2.4.
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Fig. 2.5 Histograms of the atomic inversion of an atom subjected to 100% AM

excitation at the first four anti-resonances. Histogram- are constructed of the

behavior of the atomic inversion at the first four parametric anti-resonances for a

modulation frequency 8,T 2=3. The histograms are constructed using 100000

points and the results are normalized to 7500 occurrences. The parameters used

are: (a) KEIT 2 =5.75; (b) KEIT 2 =10.55; (c) icEIT 2=15.3; (d) KEIT 2=20.03.

These parameters are the same as those used in Fig. 2.3.
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extent near the anti-resonance, a peak in the inversion histogram emanates in

the negative inversion region. This peak actually overshadows all other peaks in

the histogram. The atomic trajectory stalls at this value of the inversion. Then,

this peak bifurcates into two peaks which move apart as the field intensity is

further increased. At the same time the entire histogram contracts about the

zero inversion value as the intensity is increased to correspond with the next

subharmonic resonance. The reader is encouraged to see the movie!

D. The experiment

In order to test the theoretical predictions discussed in the previous sections,

we set out to perform an experiment using a radiatively broadened (T2 = 2T1 )

two level atomic medium. Atomic sodium was prepared in an atomic beam as

the medium. A home-built stabilized dye laser was used to excite the atoms with

a 100% amplitude-modulated field. The absorption of the field was determined

by monitoring the total fluoresence scattered from the interaction region. In this

section I discuss the apparatus ana techniques used in this experiment. First,

in sub-section 1 I discuss the details of the laser stabilization. This section

is devoted primarily to people who might want to employ the stabilized laser

in experiments of their own. Then, in the next subsection, I will discuss the

atomic-beam system which was also constructed for this experiment. The last

subsection is devoted to the details of the overall experimental setup. This

includes the production of the 100% AM filed and the collection of the signal.

The reader who is not interested in using any of this equipment should skip to

subsection 3 for the description of the actual experiment.
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1. The stabilized laser

The lasers we use in our experiments are home-built. In this experiment

we used a rhodamine 6G dye laser pumped by an argon-ion laser. The dye jet

is one which Coherent uses in their commercially available dye lasers. The jet

is approximately 300 p thick by 3 mm wide. The dye is flowed through this

jet at 35 psi. Great care is taken to insure that vibrations from the pump are

eliminated from the fluid system to prevent these fluctuations from degrading

the frequency stability of the dye laser. The vibration isolation is accomplished

by using pliable tygon tubing to connect the dye jet to the rest of the system.

Further vibrational damping is accomplished by a ballast made of a "Master of

the Universe" punching ball which is inflated by the dye's pressure inside of a

sealed housing. These precautions insure that the frequency jitter of the laser

is roughly 10-20 MHz before active stabilization is employed. Consequently, the

stability of our dye laser is superior to the Coherent 699 stabilized dye laser

system in the "free-run" mode of operation.

The reader should refer to Fig. 2.6 for the following discussion of the op-

tics employed in the stabilized dye laser. The laser is a standing-wave laser

which operates in two longitudinal modes separated by approximately 60 GHz

in frequency. For further details into the philosophy of this laser-cavity con-

figuration the reader can see Mary Citron's thesis 2 8 or the paper we published

on the "washing machine instability."29 Two broadband high-reflector focusing

mirrors, each having a 5 cm radius of curvature, are used to focus and recolli-

mate the laser beam through the dye jet. One of the curved high reflectors also

serves to focus the argon pump beam into the dye jet. The focusing mirrors

are each mounted on Melles Griot translation stages to allow easy adjustment

of the focus of each mirror. The pump beam and the dye-laser beam each have
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Fi g. 2.6 Two-mode standing-wave dye laser layout. The cavity consists of
five mirrors: two 5 cm radius high reflectors mounted on translation stages; a knife-

edge high reflector, a high reflector flat mounted on a PZ pusher (tweeter); and a

5% output coupler mounted on a translation stage. A three-plate birefringent tuner

is used for course tuning. Two etalons are used for mode selection. A third etalon
is mounted on a galvo motor and is inserted at brewsters angle to serve as a woofer.
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approximately a 15 M spot size at the dye jet. This pump geometry has been

employed in past experiments. 24- 27 A knife-edge high-reflector mirror allows the

argon pump beam to be brought in parallel to the dye-laser laser cavity axis.

The knife-edge also serves as one of the end mirrors of the dye-laser cavity. A

fourth high-reflector flat mirror is mounted on a piezoelectric pusher to serve as

the tweeter in the stabilization circuit. This mirror folds the cavity axis onto

the 5% output coupler which is mounted on another Melles Griot translation

stage to facilitate small adjustments of the length of the dye-laser cavity. The

coarsest frequency filter used in the dye-laser cavity is a three-plate birefringent

filter supplied by Coherent Inc. The birefringent filter provides an initial band-

width of less than 100 GHz. The next finer tuning element is a 1 mm thick

etalon which is coated with a 15% reflective coating on both sides. The finest

tuning element is a 5 mi thick etalon with a 15% reflective coating. The free

spectral range of the thick etalon is 60 GHz which is the frequency separation

of the two lasing longitudinal modes. At this point it is necessary to point out

that a homogeneously broadened stantling-wave laser with a thin gain medium

is unstable in single-mode operation. When a standing-wave laser operates in

a single longitudinal mode, spatial hole burning results since the standing-wave

pattern of a single mode would utilize only half of the pumped atoms. The sinu-

soidal interference pattern due to a single-mode standing-wave field produces a

condition of spatial hole burning within the gain medium. Two modes separated

by as much as 60 GHz can maintain a constant phase difference throughout the

100 pm thick gain medium. Therefore, it is necessary for the laser to operate

in at least two modes in order to deplete the gain in a spatially uniform man-

ner. The reason a single-mode unidirectional ring laser is not used is that our

unidirectional device (a Faraday rotator and a birefringent crystal) introduces
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too much loss to the laser cavity. Fuarthermore, since the frequency separation

between the lasing modes is 60 GHz and the linewidt, of the atomic transition

in sodium is 10 MHz we can tune one mode to resonance and assume that the

other mode does not interact with the atoms.

Stable two-mode operation in the described standing-wave laser configura-

tion occurs only under certain conditions. The position of the end mirrors with

respect to the gain medium is an important factor. Therefore, we mount the

output coupler on a translation stage. Stable two mode operation occurs for

several end-mirror positions. Once one of these positions are found, another po-

sition can be found by translating one of the mirrors by the optical path length

of the thick etalon. The stability of the laser to two mode operation is related

to the position of the nodes and antinodes of the two-mode interference pattern

at the end mirrors and in the gain medium. The knife edge is first positioned by

hand and then the position of the output coupler is tweeked to produce stable

two-mode operation. These steps are repeated until the operator can lean on

the table or otherwise deform the dye-laser cavity, causing the laser to mode-hop

from one set of two modes to another, without a third mode turning on.

Once the laser is operating in a stable two-mode configuration the active

stabilization can be engaged. A thick glass plate is used to produce two pick-off

beams for the stabilization circuit (see Fig. 2.7). One beam is directed onto a fast

detector (bandwidth of over 1 MHz) and the other is directed into a thermally

stabilized pressure-scanned confocal Fabry Perot interferometer (FPI). The de-

tails of the construction of this FPI are outlined in a paper by M. Hercher 30 and

I will only briefly discuss them here. A combination of Super Invar and Cervit

(a ceramic) are used in the mechanical cavity. These materials have small coef-

ficients of thermal expansion but of opposite sign. The lengths of each material
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Fig. 2.7 Optical layout for the frequency stabilization of the dye laser. Shown

is the layout of the optical components involved in the stabilization process together

with the routes of the electrical signals involved. Two pick-off beams are used: one

for a reference-intensity measurement; the second is used for the frequency

measurement. The frequency is monitored via a detector positioned in back of a

temperature-stabilized pressure-scanned Fabry Perot interferometer. The

stabilization circuit performs a fast divide operation on the two signals. The

resulting error signal is fed through a crossover circuit to drive the woofer and

tweeter correcting elements in the laser cavity.
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are chosen to produce a structure which is invariant to small uniform changes

in temperature. The optical path length of the FPI iE changed by a micrometer

screw which pushes on a diaphragm which is exposed to the cavity via an air

passage. Once the desired cavity resonant frequency is obtained the cavity can

be valved off from the diaphragm to isolate the cavity from pressure fluctua-

tions in the room. A second fast photodiode is positioned in back of the FPI

to monitor the transmitted intensity from the cavity. The stabilization circuit

divides the transmitted signal from the Fabry Perot by the intensity reference

signal to obtain a voltage whose value represents the difference of the laser's

frequency from the resonant frequency of the FPI. The intensity of the laser is

divided out to prevent intensity fluctuations from obscuring the frequency mea-

surement. The normalized FPI signal represents a nearly linear conversion of

small frequency fluctuations into voltage fluctuations. This is the error signal

for the stabilization circuit. If the laser is locked onto the side of a transmission

peak of the FPI and the fluctuations are small compared to the linewidth of the

FPI then the conversion of frequency fluctuations to voltage fluctuations is a

linear process.

The stabilization circuit is based on a fast divide chip (3091D) from RCA.

The circuit diagram for the stabilization circuit is shown in Figs. 2.8 - 2.10.

The signals from the detectors are first amplified by a factor of ten using the

two op-amps shown in Fig. 2.8. The amplified signals are fed into the fast

divide chip as shown in Fig. 2.9. The divide circuit puts out one signal which

is proportional to the frequency error. This signal is split between the tweeter

driver and the woofer driver. These cross-over circuits are shown in Fig. 2.10.

The tweeter circuit is diagrammed in Fig. 2.10. The tweeter circuit has

been designed to provide large low-frequency gain. The idea is to provide two
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Fig. 2.8 Circuit diagram of the input amplifiers in the frequency-stabilization

circuit. Two Motorola 356 op-amps are employed. Each amplifier provides a lOX
amplification with a bandwidth of over 1MHz. The input signals come directly

from the detectors used in the intensity and frequency measurements of the laser

beam. The amplified signals from these amplifiers are fed into the fast-divide

circuit.
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Fig. 2.9 Schematic of the fast-divide chip circuit. Shown is the circuit diagram

for the RCA 3091D fast-divide chip and associated circuitry. Ile circuit takes

inputs from the input amplifiers for the reference intensity and the Fabry Perot

transmitted intensity. The output signal is proportional to the Fabry Perot signal
divided by the reference intensity. This output signal goes to the crossover circuit.
The op-amp shown is a Motorola 356 op-amp.
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Fig. 2.10 The cross-over network for the laser frequency stabilization circuit.

This circuit takes the error signal from the output of the fast-divide circuit and

amplifies it for proper signal strength and bandwidth for the woofer and the tweeter

drivers. The tweeter circuit is designed for high gain-bandwidth product at low

frequencies as well as maximum bandwidth. Then woofer amplifier performs and

integration of the error signal. All op-amps are Motorola 356 op-amps.
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gain roll-off points ocurring at two different frequencies. The high frequency

gain roll-off is designed to provide unity gain at the 9-degree phase error point.

The lower frequency RC constant is designed to allow greater gain at the lower

frequencies to provide greater stability at these lower frequencies than a mere

factor of two above unity gain (characteristic of a simple RC roll-off). The 330k

resistor is used to top off the low frequency gain to prevent runaway integration

of voltage at extremely low frequencies. The tweeter signal is fed into a Trek

601-2 high-voltage op-amp which provides a voltage gain of 100 to drive the

tweeter piezoelectric crystal on which is mounted one of the cavity mirrors. An

additional RC compensation circuit is placed in parallel with the piezoelectric

crystal in order to pull the apparent impedance seen by the Trek amplifier into

the first quadrant of the phase plane and maintain a phase error of less than 90

degrees out to 5 kHz.

A diagram of the woofer driving circuit is shown in Fig. 2.10. The signal

for the woofer is integrated about a voltage value set by the user. The woofer

acts not only as a low-frequency correction device but it also integrates any DC

charge off of the tweeter circuit so the piezoelectric crystal always operates in

the center of its dynamic range. The woofer signal is sent to a galvo circuit

which rotates a glass flat in the cavity oriented at brewsters angle to minimize

loss and etaloning effects. The procedure for locking the laser is to first stabilize

the laser with the feedback in the woofer circuit shorted. This is accomplished

by tuning the Fabry-Perot reference cavity around until locking occurs. Then

the woofer circuit is activated by opening the short.

2. The atomic beam system

In this section I describe the atomic beam apparatus which we constructed
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for this experiment and other experiments involving the gathering of scattered

light from an atomic beam. The system features a large F-number for efficient

collection of scattered radiation from the interaction region. Windows of 1.5

inch clear aperture are situated at 2.5 inches from the beam on three sides. A

diagram of the system is shown in Fig. 2.11. The atomic beam axis points

vertically through a portable table with a steel top. The steel top on this table

allows convenient clamping for optical mounts on magnetic bases.

The system was designed to isolate the optical interaction region from the

alkali cloud usually associated with the oven chamber of an atomic beam system.

The relatively dirty oven chamber is pumped by a diffusion pump. A liquid

nitrogen cold trap is used to condense the alkali gas before it reaches the diffusion

pump. During operation of the atomic beam the only connection between the

the oven chamber and the interaction region is through the uppermost pinhole.

During periods when the oven is filled with alkali but it is not being used, the

diffusion pump can be valved off from the oven and turned off. The turbo-

molecular pump (Balzers TPU 170) which pumps the optical interaction region

can now be used to pump the cool oven chamber as well as the interaction

region. This is accomplished by opening a ball valve which separates the two

high vacuum regions during operation of the atomic beam. During operation of

the beam, the turbo pump is used to pump the interaction region since turbo

pumps are intrinsically cleaner than diffusion pumps. A cold finger at the top

of the interaction region is filled with liquid nitrogen during beam operation to

collect the atoms after they pass through the interaction region. This helps to

keep the optical interaction region clear of an atomic cloud. Both the diffusion

pump and the turbo pump are rough-pumped by 'he same mechanical floor

pump.
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Fig. 2.11 The atomic beam system. The beam of sodium atoms runs vertically

originating from a pinhole in the top of the sodium oven and defined by a second

pinhole beneath the interaction region. The interaction region is isolated from the

oven portion of the vacuum system by a ball valve and the upper pinhole. A

diffusion pump is used to pump the oven portion of the va,: .n system. A Balzers

turbo-molecular pump is used to pump the interaction region portion of the vacuum

system. Four windows allow optical access to the interaction region.
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A 400pm pinhole is sealed to the top of the oven and a second 400pm pinhole

is spaced approximately 25 cm above the oven to define an atomic beam with

an angular divergence of about 1.5 milliradians. This angular divergence allows

roughly 2 MHz of Doppler broadening of the atomic transition frequency. The

oven is heated by two separate electrical cartridge heaters which are fastened to

the side of the oven. When the beam is started the upper heater is turned on

first in order to evaporate any alkali metal which may have deposited onto the

pinhole of the oven during the last cool-down. Once the upper part of the oven

reaches the proper temperature the lower heater is powered in parallel with the

upper heater. The oven is fastened at its base through a ceramic spacer to the

base of the oven chamber. Therefore, the lower part of the oven maintains a

lower temperature than the pinhole since heat is removed through the bottom

of the oven by slow conduction. The pinhole on the oven chamber must always

be the hottest part of the oven to prevent its clogging. When the system is to be

cooled the lower heater is unplugged first to allow the alkali to condense away

from the pinhole on the bottom half of the oven away from the pinhole.

3. The experimental setup

The experimental apparatus that we used to study the rate of absorption

of the 100% AM field is shown in Fig. 2.12. The absorption is determined by

measuring the total fluorescent intensity from a small portion of the interaction

region. A lens is used to image the fluorescence from the interaction region

onto a pinhole placed in front of a photomultiplier tube. The pinhole is used

to filter the fluorescence signal to that originating from a small volume in the

center of the interation region where the intensity of the excitation is constant

to within 20%. By spatially filtering the image of the interaction region we can
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study atoms with nearly equal Rabi frequencies. The detectors are dc-coupled

to measure the time-averaged fluorescence.

Atomic sodium was chosen as the atomic medium because it has a large

oscillator strength and is readily made into a two-level atomic system. To obtain

a two-level atomic system we resonantly excited the 3s - 3p transition with

circularly polarized light. A two-level system results from the pumping of the

population into the aligned magnetic sublevels."' The atomic beam is collimated

to provide a divergence angle of 1.5 mrad with an associated Doppler width of

less than 2 MHz [this is 20% of the natural linewidth (FWHM) of the sodium

transition]. The atoms were excited by a circularly polarized laser beam whose

angular divergence was less than 1 mrad (this angular divergence provides for

no more than 1-MHz Doppler broadening). The laser beam is the output of a

frequency stabilized Rhodamine 6G dye laser whose full-width jitter is less than

1 MHz (see section D1 for details). The combined broadening mechanisms listed

above account for a total systematic frequency broadening of less than 4 MHz,

or 40% of the natural linewidth (FWHM). This systematic linewidth is verified

by measuring the full spectral width of the atomic transition to be 14 MHz [the

natural linewidth is 10 MHz (FWHM)].

We produced a 100% AM laser field with a modulation frequency, bw/2r,

of no less than 15 MHz, which is three times the polarization relaxation rate

of the sodium D2 line. The modulated field was produced using a method rec-

ommended to us by S. Ezekiel."' The laser beam is passed through a high effi-

ciency acousto-optic modulator operating in the cw diffraction mode. A portion

of the beam was upshifted by the drive frequency of the acousto-optic modula-

tor (AOM). The diffraction efficiency is adjusted so the intensity diffracted into

the first-order beam is equal to that remaining in the zeroth-order undiffracted
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Fig. 2.12 Experimental apparatus. The following labeling convention is used in

this figure: SDL- stabilized dye laser, AOM- acousto-optic modulator, M- mirrors;

BS- beam splitter, LP- linear polarizers; EOM-electro-optic modulator; V4- quarter

wave plate; Na- sodium oven; PH- pinhole; PMT- photrhultiplier tube; PD-

photdiode. The 100% AM field is created by recombining the zeroth and the first-

order diffracted beams from the AOM. The EOM is used to control the intensity of

the field. Circularly polarized light is used to maintain the atoms in a two-!evel

system.
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beam. The diffraction efficiency of the AOM is adjusted by varying the amount

of rf power supplied to the AOM crystal. The bich:-)matic field is created by

recombining the first-order diffracted beam with the zeroth-order (undiffracted)

beam. The two beams are aligned with interferometric precision so that a strong

beat note at the AOM drive frequency can be clearly detected by a fast photo-

diode measuring the far-field intensity. After recombination, the field state can

be described in terms of a carrier, at the mean frequency of the two frequency

components, that is 100% AM modulated at one half the drive frequency of

the AOM. Because the recombination geometry is different for each modulation

frequency, it was inconvenient to vary ,he modulation frequency in search of

the resonances. Instead, we held the modulation frequency fixed and varied the

Rabi frequency by sweeping the intensity of the laser. This was done with a set

of linear polarizers and an electro-optic cell driven by our computer.

At each power setting we recorded the incident laser intensity along with

the intensity of the fluorescence emitted by the atoms. Each data point was

averaged 100 times over --everal milliseconds to integrate out any fast intensity

fluctuations of the laser field. All data were recorded with a 12-bit analog-

to-digital converter on a PDP-11/23 rnicromputer. The 36-dB dynamic range

provided by the digitization is necessary to match the dynamic range of the

data.

E. Experimental results

1. DC fluorescence signal

We collected data for the AM excitation for several different modulation

frequencies and several different detunings for each modulation frequency. In

this section I will present this data in raw form and with theoretical fits. I show
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the effects of detuning on the resonances. Also I will show a figure which reveals

the behavior of the extrema in the response of the fluorescence for different

detunings and excitation strengths.

In Fig. 2.13 I have plotted the data in raw form (fluorescence signal versus

intensity) together with the best theoretical fit to this data. The theory has

been modified to account for slight experimental complications such as intensity

averaging over the Gaussian laser beam profile and a mismatch in the intensity

of the two frequency components. The data is plotted versus the time-averaged

dimensionless intensity 2I1. The squares in Fig. 2.13 represent the data taken

with a dimensionless modulation frequency 6wT 2 = 5. for resonant excitation

AT 2 = 0. The solid line represents the best theoretical fit with 20% intensity

averaging and a 25% mismatch in the intensity of the bichromatic field com-

ponents. The mismatch in the intensity of the field components can be due

to imperfections in the AOM or in the alignment of the two frequencies at the

atomic beam. The effects of Doppler broadening are probably present as well

but I have not included them in the fit.

We also collected data at a 40 MHz AOM drive frequency which corresponds

to 6wT 2 = 4. At this modulation frequency we took data for 4 values of detuning:

AT2 = 0.0; AT 2 = 2.0; AT 2 = 4.0; AT2 = 6.0. Data is shown at each of these

detunings in Figs. 2.14(a-d). In each figure I plot the raw data together with

the unmassaged theory for the same parameters. The x-axis of each graph is

the square-root of the time-average of the squared Rabi frequency fie. the root-

mean-square (RMS) Rabi frequency]. I attribute the mismatch in the position of

the first extrema of the data and theory to the Doppler and intensity averaging

which were present in the experiment but not in the theoretical plots shown

here. These experimental complications also explain the mismatch in the depth
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Fig. 2.13 The time-averaged fluorescence signal versus the time-

averaged dimensionless intensity. The time-averaged fluorescence signal

collected from atoms in the atomic beam excited by a 100% AM modulated field

is plotted versus the time-averaged dimensionless intensity of the excitation.

Data (squares) is shown for a modulation frequency of &oT2=5.0. The solid

line is the best theoretical fit to the data after intensity averaging and

inhomogeneities in the excitation are taken into account.
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of the resonances. From Figs. 2.14(a-d) it is apparent that the effect of detuning

is to cause the resonances to occur at a smaller value of the Rabi frequency than

for resonant excitation. This indicates that the generalized Rabi frequency is

involved in the occurrence of the parametric resonances.

In Fig. 2.15 I have plotted the parameters corresponding to the first three

local extrema of data similar to those shown in Fig. 2.14. Plotted is the RMS

Rabi frequency versus the detuning for the first three local maxima (squares)

and for the first three local minima (circles) for the fluorescence versus Rabi

frequency curves for bwT 2 = 4.0 and three different values of detuning: AT 2 =

0.0, 2.0,4.0. As the detuning increases the theory predicts that the corresponding

extrema (ie. 1" maximum and 1t minimum) will coalesce. This effect is shown

in Fig. 2.15 for the first extrema. The data corresponding to the first extrema

seems to lie on a narrower contour than the theory predicts. I attribute this

effect to Doppler averaging and intensity smearing present in the experiment.

Except for this effect, the data and theory shown in Fig. 2.15 agree.

2. Derivative of the fluorescent response

Until this point we have concentrated on the total time-averaged intensity

emitted via fluorescence from the interaction region. However, measuring the

total fluorescence as a function of excitation strength is a background-limited

detection process. The reason for this is that the resonances lie on a saturation

curve which is at least an order of magnitude larger than the depth of the

resonance structure. Our interest in signal-limited detection schemes has led

us to devise a method to observe the resonances of modulation without the

saturation curve as a background.

If we take a derivative of the saturated response curve, the modulation-
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Fig. 2.14 Fluorescent intensity versus the dimensionless RMS Rabi

frequency. Data and theory are shown for a dimensionless modulation frequency
Bw1T 2=4.0 and four dimensionless detunings: (a) AT2=0.0O; (b) AT2=2.0; (c)
AT 2 -4.0; and (d) tAT 2=6.0. The squares represents the data and the solid lines

represents the theory. Y-axes for the data and theory have been normalized to
unity.
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Fig. .15 Te dimensiOnleSS root.mealsquare (RMS) Rabi frequency

versus the dimensionless deturjlng for the first three resonlaces- lte x h

param~eters corresponlding to the first three extretna (n=1 ,2,3) in the

floecne-essRb-rqec 
data (see Fig. 2.14) for three different

detunilgs: AT2 =0.0; AT2 = 2.0; and AT 2 = 4.0. Thec squares correspond to

the local maxima in the fluorescence data while the circles correspond to local

minima in the data. The solid lines represent the theoretical positions for the

extretna.
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resonance extrema lie symmetric about zero signal. The derivative measurement

is a signal-limited detection. However, numerically e.*.racting a derivative from

our previous data would be too noisy. Instead, we devised a method to directly

record the derivative of the fluorescent response with respect to intensity. In

Fig. 2.16 is a diagram of the experimental apparatus. This setup is similar to

that shown in Fig. 2.12. We have added the AOM2 driven by a signal generator

(Wavetek model 188 sweep/function generator), and a lock-in amplifier (EG&G

PARC model 5210 dual-phase Lock-in Amplifier). The AOM2 provides a weak

audio-frequency amplitude modulation to the excitation intensity. The signal

generator provides the modulation signal at the audio modulation frequency to

the AOM2 and the reference signal to the lock-in amplifier. In this experiment

the signal from the PMT is fed into the lock-in amplifier. The lock-in amplifier

reports the in-phase signal to the computer. The response curve of the fluo-

rescent intensity to the 100% AM excitation acts as a transfer function to the

weak modulation in the excitation intensity [see Fig. 2.1(b)]. The effect of all

this is that the lock-in measurement is analogous to a derivative measurement.

The signal from the lock-in amplifier is actually the derivative of the fluorescent

response with respect to intensity.

The results of this experiment are plotted together with the theoretical

predictions in Fig. 2.17(a-d). The derivatives were recorded for a modulation

frequency of 22.5 MHz (ie. bw T2 = 4.5). We 'ecorded data for four values of

the detuning. In Fig. 2.17(a) is shown data and theory for resonant excitation

AT2 = 0. The first peak of the curve represents the rising edge of the response

curve where the derivative is the largest. The falling edge of the derivative

passes through zero at the first-harmonic resonance. The curve goes through

its first minimum at the inflection point of the response curve. After this,
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Fig. 2.16 Experimental apparatus fcr the derivative measurement. Ile AOM2

and the lock-in amplifier and signal generator are added to the apparatus shown in

Fig. 2.12 in order to weakly modulate the excitation intensity. The following

labeling convention is used in this figure: SDL- stabilized dye laser, AOM- acousto.-

optic modulator, M- mirrors; BS- beam splitter, LP- linear polarizers; EOM..electro-

optic modulator, )J4- quarter wave plate; Na- sodium oven; PH- pinhole; PMT-

photmultiplier tube, PD- photodiode.
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the derivative passes through zero again at the first minimum of the response

function. Whenever the derivative signal crosses zej from the positive side a

subharmonic resonance is encountered. Whenever the derivative crosses zero

from the negative side an anti-resonance is encountered.

In Figs. 2.17(b-d) I plot the derivative signals for detuned excitation. I

plot signals for AT 2 = 2. in Fig. 2.17(b). In this figure it is barely apparent

that the position of the resonances are moving toward lower intensity. In Fig.

2.17(c) I plot the derivative for AT 2 = 4. At this detuning it is obvious that

the positions of the resonances occur for smaller values of intensity than they

did for resonant excitation as shown in Fig. 2.17(a). Also, the first minimum in

the derivative has moved toward the zero value on the y-axis. This means that

the zero crossings of the derivative for the first resonance and anti-resonance are

beginning to coalesce. Finally in Fig. 2.17(d) the first resonance is gone since the

derivative does not cross zero. The first minima and maxima of the fluorescent

response are now no more than an inflection point. I will emphasize that the

theoretical curves plotted here are unmassaged. Experimental complications

such as Doppler averaging and intensity averaging lead to any discrepancies

between theory and data.

F. Harmonic and pulsed excitation of a two-level atom

In this section I hope to provide further physical insight into the modula-

tion problem by making an analogy between modulated excitation and pulsed

excitation. In this section I will discuss the physics of the modulated interac-

tion with pulsed excitation in mind. I will treat the 100% AM interaction as a

sinusoidal pulse interaction. I present this discussion as both an explanation of

the physics of these interactions and a motivation for future work in this area.
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Fig. 2.17 Derivative of the fluorescent response of a two-level atom to 100%

AM excitation versus the dimensionless intensity. The signal from the lockin is

plotted versus the excitation intensity for a dimensionless modulation frequency

SWT 2 -4.5 and four values of the dimensionless detuning: (a) AT2--O.0; (b)

AT2=2.0; (c) AT 2=4.0; (d) AT2=6.0. For weak modulation, the first-harmonic

signal reported by the lock-in amplifier is the derivative of the response curve.
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To motivate the analogy between the 100% AM interaction and pulsed

interactions I have plotted the time-averaged excitd-state population versus

excitation strength for a series of harmonic excitations of the form

E(t) = E 1 I + Ej2cos(n t) , (2.11)
n=1

for several values of the number of harmonics N. In Fig. 2.18 the excited-

state population versus the excitation strength KEG for excitation consisting of

0, 2, 5, 7, 10, and 20 harmonics of the modulation fundamental b0. As the

number of harmonics increase the depth of the modulation in the response of

the excited-state population versus excitation strength increases. As the number

of harmonics gets larger the response curve begins to look sinusoidal. This

type of response is characteristic of )ulsed interactions. To demonstrate this

effect I have plotted the excited-state population versus pulse area for an ideal

(infinitesimally short pulses) pulse train incident on an ensemble of two-level

atoms. In Fig. 2.19 I have plotted the excited-state population versus pulse

area for several different pulse repetition rates. In the limit of large repetition

rate the response of the population is a sinusoidally varying function of the

pulse area. Also, whenever the pulse area is a multiple of 21r the time-averaged

population in the excited-state is zero. With this in mind I will now consider

the interaction of a 100% AM field with two-level atoms.

To further the analogy between the bichromatic interaction and pulsed in-

teractions I will calculate the area of a sinusoidal pulse. In Fig. 2.20 is a plot

of the sinusoidally varying Rabi frequency in the rotating frame for a resonant

100% AM field. The indicated area A is the "pulse" area I will calculate. The

area is

A = 2KEszn(bwt) dt = 4KE (2.12)

Jn
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Fig. 2.18 DC or time-averaged excited-state population versus Rabi frequency

kET 2. The response of the excited-state population to harmonic excitation

containing different numbers of harmonics is plotted. The excited-state population

is plotted for &aT2 = 4.0. The calculations shown are for the number of harmonics

N =0, 2, 5, 9, and 20.
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Fig. 2.19 The DC or time-averaged excited-state population versus the

pulse area 0. The response of a two-level atom to a train of infinitessimally

short pulses is shown. The curves shown are (from bottom to top) for a pulse

repetition rate of RT 2 = 0.1, 0.2, 1.0, 2.0, 4.0. As the repetition rate is

increases the depth of the modulation in the response becomes deeper. Each

curve goes to zero for pulse area of 27E multiples.
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Fig. 2.20 Magnitude of a sine-wave versus time. The function
2xEsin(Scwt) is plotted versus time. The area under the first maximum is

highlighted. This area is A = 4KE/&.
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I have already indicated in section B of this chapter that tne resonances occur

whenever the Bessel function JO (2"E) is equal to zero. For large arguments the

zeros of Jo(x) are equally spaced such that

7r
x - + nir. (2.13)

4

We can use the expression for the area of the sinusoidal pulse [Eq. (2.12)] and

Eq. (2.13) to arrive at an expression for the sinusoidal pulse area corresponding

to the resonances of the 100% interaction

7r
A - + n21r. (2.14)

The resonances occur whenever the area indicated in Fig. 2.20 is increased by

a multiple of 27r. This behavior is reminiscent of the response of the atoms to

the ideal pulsed excitation in Fig. 2.19.

G. Conclusion

I have -)resented both theory and experiment for the absorption of a 100%

AM field by a closed two-level atomic system. The interaction reveals reso-

nances at subharm-onic multiples of the Rabi frequency. We observed the first

three subharmonic resonances with resonant and detuned excitation. In this

chapter I have presented an experimental, theoretical, and numerical study of

these subharmonic resonances. I have discussed both the time-averaged and the

harmonic responses of the atoms to the modulated excitations.

The data presented in section E of this chapter shows the saturated absorp-

tion of the 100% AM optical excitation. The subharmonic resonances appear as

enhancements and reductions of the fluorescent intensity over the usual single-

field fluorescent response as a function of excitation intensity. In calculating the
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theoretical fits I have accounted for experimental complications such as intensity

averaging and imperfect modulation conditions. The data is well fit by this type

of theory. I have also analyzed the extrema in the response of the fluorescence.

A plot is constructed showing the parameters corresponding to each extrema

for different detunings and excitation strength. The parameters corresponding

to the extrema from the data are compared with the theoretical predictions.

Again, the agreement between experiment and theory is good.

In section C I have considered the dynamic behavior of the atomic variables.

The phase plots of the polarization versus the inversion show that the trajectory

takes on an additional pair of cycles at each resonance. This conclusion has

been substantiated by histogram plots. The histograms contain characteristic

harmonic peaks. An additional pair of harmonic peaks occurs at each resonance

in the absorption. The atomic trajectory oscillates in period n fashion where n

is the number of the subharmonic resonance.

The data rTresented in this chapter shows that the amplitude of the ab-

sorption of the bichromatic field is enhanced at the first-order resonance and at

each of the subharmonic resonances. This result differs from that obtained by

Thomann.12 The results of that experiment showed a decrease in the absorp-

tion at each resonance. In that experiment the field-modulation index was no

larger than 0.65, so there was always a significant field component at the car-

rier frequency. When the carrier frequency is present, it can beat with each of

the modulation sidebands to produce overtones, at harmonics of the modulation

frequency, in the atomic response. This beat frequency is one half of the beat

frequency arising from the interference between the two r-odulation sidebands.

The harmonic overtones of these two sets of beat notes can destructively in-

terfere in a three-field experiment. This interference causes the absorption to
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diminish at each resonance.

I have presented a signal limited detection scheme for observing the sub-

harmonic resonances. In the second part of the section containing experimental

results I demonstrated that by using lock-in detection and a weakly modulated

excitation intensity the derivative of the response of the fluorescent intensity

to the bichromatic fields can be measured. The theory and experiment agree

quite well using this superior detection scheme. Thomann 12 used lock-in detec-

tion in his experiment to measure the difference between modulated (three-field)

and single-field excitation. Employing the technique used by Thomann in the

three field experiment would not have been possible in our two field experiment.

However, both techniques get around the errors encountered in measuring the

resonances on top of the saturation curve.

I have also shown that the interaction of a 100% AM field is comparable

to an interaction involving a pulse train. The subharmonic resonances occur

whenever the area under the sinusoidal pulse in the 100% interaction is increased

by 27r. This type of behavior is similar to pulsed interactions in which the

dynamics repeat themselves for pulses whose areas are multiples of 27r.

I have demonstrated the complicated behavior of a purely bichromatic field

interacting with a closed two-level atomic system. Subharmonic resonances oc-

cur because of the coherent nonlinear interaction of a multifrequency field with

an isolated atomic resonance. It is exactly this type of nonlinear interaction that

determines the competition or cooperation between cavity modes in a laser gain

medium. The same set of subharmonic resonances occurs in a saturated two-

level amplifier interacting with a modulated laser field. This provides a possible

mechanism for multimode instabilities in homogeneously broadened lasers.
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Chapter 3

A FOUR-LEVEL LASER AMPLIFIER

WITH AN AMPLITUDE MODULATED PUMP

A. Introduction

It has long been realized that population oscillations or pulsations play an

important role in laser dynamics. 4 By population oscillations I mean the mod-

ulation that occurs in the atomic inversion of a laser gain medium. Population

oscillations can occur at the laser's intermodal beat frequency and couple to-

gether different longitudinal cavity modes. This coupling is important in the

onset of mode locking as well as in the occurrence of laser instabilities. 2'3

Population oscillations have been studied in homogeneously broadened ab-

sorbers. 5 " 4 When a two-level absorber is driven by a strong saturating field

as well as one or more weak probe fields, the rate of absorption of the probe

fields depends on the probe-field detuning from the saturating field. At small

probe-field detunings the absorption of the probe field is decreased producing an

induced spectral hole in the homogeneous absorption spectrum. 5- 14 This effect

was first predicted by Schwartz and Tan.' They predicted that if a collisionally-

67
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broadened (eg. T2 < T1 ) saturable absorbing media were driven by a strong

resonant field and an additional weak probe field were applied, the weak probe

field would experience diminished absorption if it were detuned from the strong

field by an amount less than the population decay rate TT-. Throughout this

chapter this induced-gain feature will be referred to as the "1/T1 hole." In a

later work, Sargent et al." extended this research to show that weak amplitude

modulation (AM) could be applied to the saturating field and the absorption

spectrum of the AM sidebands would exhibit the same spectral hole at zero mod-

ulation frequency. Furthermore, Sargent et al.6 showed that the spectral width

of the hole in the absorption spectrum of the modulation sidebands broadens

proportionally to the dimensionless intensity of the saturating field. The work

I report on in this chapter is a direct extension of these early works5 ' 6 and of

more recent research performed at The Institute of Optics at the University of

Rochester.
7- 14

Hillnan et al.7 and Kramer et al.8 have showed that a "natural modes"

formalism can be used to describe the physics behind the population-oscillation

induced spectral holes in a homogeneously broadened absorber. Furthermore,

Boyd and Mukamel' 0 presented an explanation of the physical cause of the

spectral holes by describing the multiphoton interactions between the strong

field, the probe field, and the absorber. Another way to examine the physics

is to consider that when the atomic population is capable of following the beat

frequency between two optical fields, the absorption of both these fields by the

atoms is reduced. This argument is further justified by the fact that the response

of a harmonic oscillator is 90 out of phase with the driving field at resonance

(resonance is defined by the frequency at which the driving field experiences

maximum absorption).
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The experimental realization of the Tj' spectral hole has been obtained in

a series of three experiments at The Institute of Optics. The first experiment

was performed by Hillman et al. 1' 14 in ruby. In this experiment an argon-ion

laser beam was used to pump the ruby crystal. The intensity of the pump

beam was weakly amplitude modulated at a variable modulation frequency and

the amplitude of the modulation in the transmitted pump-beam intensity was

recorded by a lock-in amplifier. This transmission data was used to obtain

the saturated absorption spectrum of the modulation sidebands. Although the

observation of the population-oscillation-induced spectral dip was confirmed,

the value of T, obtained using the modulation measurement did not agree with

previously reported values of T, for ruby.

In a later experiment, Malcuit et al.12 performed a similar experiment in

alexandrite. The value of T, derived from the modulation data in this exper-

iment agreed with previously reported values of T for alexandrite. A further

interesting feature was observed in this experiment when the pump laser was

tuned to a wavelength at which the excited-state absorption cross section was

larger than the ground-state absorption cross section. In this case the popula-

tion pulsations lead to an increase in the absorption of the modulation sidebands

for small modulation frequencies. That is to say that the T 1 ' dip became a T-'

tip!

The third such experiment was carried out by Kramer et al.8 '13 In this ex-

periment an argon-ion laser was used to pump a fluorescein-doped boric acid

glass (FBAG). This purpose of this experiment was to understand the mecha-

nisms involved with the triplet-state quenching of the fluorescence in the FBAG.

When the sample was cooled to liquid nitrogen temperatures the width of the

T ' hole was reduced to less than 1 Hz. This spectral feature was, at the time,
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the narrowest spectral feature ever observed. This experiment demonstrates the

usefulness and the versatility of these modulation techniques. It is possible to

obtain sub-laser-linewidth resolution with AM spectroscopy.

The work in this chapter is a direct extension of these three experimental

works. These previous experiments involved a weakly modulated laser tuned

to the pump-transition of various laser materials, and the absorption spectrum

of the pump was studied. We have tuned a weakly modulated laser to the

pump-transition of the alexandrite crystal and studied the AM spectrum of the

amplification experienced by a second laser tuned to the inverted transition of

alexandrite. In this manner we were able to measure the modulation throughput

of the laser amplifier, or rather, the transmission and amplification of modula-

tions from the pump laser to the amplified laser.

In this chapter I will explore the response of a four-level atomic system to

modulations in one or two fields each of which is applied to a different optical

transition. The only interaction of these fields is via the atomic medium. The

atoms act to transfer modulation from the pump-beam intensity to the intensity

of the field being amplified and visa versa. The rate at which modulations can

be transferred from one optical field to the other is related to the bandwidth of

the atomic system. I will show that this bandwidth depends not only on the

properties of the atoms but also on the strength of the field components which

pump atomic population around the various energy levels. In the theoretical

section of this chapter a rate equation formalism is developed to describe the

modulations of the atomic population and the modulations induced in the in-

tensity of the pump and amplified laser intensities. This theory is developed

for collisionally broadened media with the assumption that the polarization de-

phasing rate T -' is more rapid than any other spontaneous or induced rate.
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For very strong excitation the population rate equations are not valid and the

polarization equations for the atomic system should Y } included as I did in the

previous chapter for a two-level system driven by strong optical fields.

I describe an experiment we performed to demonstrate the validity of this

theory. The experiment is carried out with two dye lasers; a rhodamine 6G

laser is used as a pump; an LDS 698 laser is tuned to the inverted transition to

probe the gain of the system. Alexandrite is used as a four-level atomic medium

which is strongly collisionally broadened. In this experiment the pump intensity

is modulated and the modulated gain is measured. We measure the modulated

gain by detecting the modulation signal, at the pump-modulation frequency, in

the intensity of the LDS probe-laser beam after it has passed through the gain

medium.

This chapter is devoted to the material dynamics of a driven laser medium.

The medium is in free space to simplify this study. If the cavity dynamics are

included, the temporal response of the laser system to pump fluctuations can

be slower than either the atomic dynamics or cavity dynamics would dictate

separately. 5 In this chapter I concentrate on the dynamics of the interaction of

the laser medium with various optical fields. The treatment of the dynamics of

a complete laser system is carried out in the next chapter of this thesis.

B. Theory of modulation in a four-level atomic system

I present a theoretical analysis based on a canonical four-level system. The

four-level model is commonly used to model the energy levels of the alexandrite

crystal. Of course, no real laser is quite so simple as this model, but we can

get a basic qualitative understanding of many physical effects by studying this

simple four-level model. For systems such as alexandrite in which a band of
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levels exists, Fu and Haken16 have developed a band model which has been

proven to be successful in describing some instabilities which occur in dye-laser

dynamics.
17

I restrict the theoretical ireatment to thp -case of strong collisional broaden-

ing. In this limit we are able to adiabatically eliminate the polarization equations

of motion and start with the equations of motion for the population density ma-

trix elements of the four-level system shown in Fig. 3.1:

dwPg = -AP9 + YIPI, (3.1a)

d
I = APg- 7'ePe, (3.1b)

d
TP2 = ye pe - R(p 2 - PI) - p2/T, (3.1c)

and

d
-pi = --yiPi + R(p2 - pI) + p 2/T. (3.1d)

The ground-level population equation, Eq. (3.1a), contains the pump rate, A,

and the rapid non-radiative decay rate, 'yi. The equation of motion, Eq. (3.1b),

for the population of the initial excited state contains the rapid non-radiative

decay rate, -t,. Finally, the spontaneous decay rate from level 2 is denoted by

11T,.

Since the non-radiative decays in the Pe and Pi equations are more rapid

than all other decay rates and modulation rates, I adiabatically eliminate these

variables from the system dynamics. When I do this and invoke conservation of

population we are left with two independent equations:

d

"tP2 = -(R + A + 1/T)p 2 + A (3.2a)

and

d-tp, = -(R + A + l/T, )pq + R + l/T,. (.b
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Fig. 3.1 Energy-level diagram for a canonical four-level laser system.

Population is pumped from the ground state g to the initial excited state e by the

pump rate X. The population rapidly decays from level e to the upper lasing level,

level 2, at a rate Ye. The transition from level 2 to level 1 is naturally inverted since

y1>>l/Tl. Population is stimulated from level 2 to level I by the laser-field

stimulated rate R.



74

The factor R+ A + 1/T appears as a homogeneous coefficient in both Eqs. (3.2a)

and (3.2b). This term is the sum of the spontaneous-emission rate, lIT1 , and the

two stimulated rates, R and A; it is the population cycling rate, or rather the rate

at which a population perturbation can circulate through the system's energy

levels. This result demonstrates the value of modulation spectroscopy. The

modulation bandwidth of a closed atomic system is a measure of the complete

cycling rate of population through the system. In the limit of weak excitation

rates (R, A < 1), the cycling rate is the slowest decay rate, in this case l/T1 . A

modulation measurement can therefore be used to find any hidden slow decay

rates which would act as a bottleneck for population through the atomic levels.

In the experiment we sinusoidally modulate the intensity of the pump laser.

This modulation can be mathematically expressed as

A(t) = A0 + 2bA cos(6wt), (3.3)

where A0 is the dc or time-averaged pump rate, bA is the strength of the mod-

ulation (6A < A0 in this work), and bw is the modulation frequency in radians

per second.

Although we modulate only the pump laser, a modulation signal develops

on the probe-laser stimulated rate, which we represent as

R(t) = Ro + 26Rcos(6wt + $), (3.4)

where t is a phase lag that results from the finite response time of the atomic

system. The modulation of the probe laser results from the modulated gain pro-

duced by the modulated pump rate, A(t). In general, because of nonlinearities,

the resulting modulation on R is anharmonic and contains higher harmonics of

the modulation frequency, 6w. However, since the magnitude of the modula-
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tion sidebands, bA, is small in our experiment we neglect these higher-harmonic

terms.

Floquet's theorem tells us that since the system is driven harmonically, the

stationary-state response of the population expectation values will consist of

harmonic overtones of the fundamental modulation frequency. The population

for each of the levels in the system can be written as

00p,(t) = E pj,,exp(tinbt), (3.5)
n=-oo

where pj,n represents the nth-harmonic component of the populatio. _xpectation

value of energy level j. We substitute the expressions for the time-dependent

driving terms, Eqs. (3.3) and (3.4), and the expression for the time-dependent

populations, Eq. (3.5), into the rate equations, Eqs. (3.2a) and (3.2b). When we

equate terms of equal time dependence we get the following recurrence relations:

(1 + IR + IX + inbwTi )p2,,,+(61 + bIA)P 2,+I + (IR + IA)P2,-1

= I., + bIA( 6 n,I + 6,l,-) (3.6a)

and

(1 + IR + IA + inwT)pg,,+(, I0 + bIX)Pg,.+l + (6IR + 'IA)Pg,,,-1

= (1 + IR)bn,O + bIRbn,l + bIbn,_I, (3.6b)

where I, and IR are the dimensionless intensities of the pump laser and the

probe laser given by

I A0T1  (3.7)

and

IR= RoTI. (3.7b)
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The normalization of the stimulated rates by the population lifetime of level 2

was done since this lifetime is believed to be the bottleneck of the system (the

slowest decay rate). It is this lifetime which determines the saturation intensity

of the individual lasers. In more complicated systems the normalization may be

less obvious. In a similar manner, the dimensionless intensity of the modulation

sidebands are given by

6 1), = AT1  (3.8a)

for the pump laser, and

H51 R = bRT1 exp(i 4) (3.8b)

for the probe laser. The asterisks in Eqs. (3.6a) and (3.6b) denote the complex

conjugate.

These recurrence relations can be solved iteratively to give an analytic solu-

tion for the population in terms of continued fractions. In this chapter I consider

the case when the modulation index is small ('5Ix,bIR < 1). This assumption

allows us to truncate the continued fraction and obtain a solution to first-order

with respect to the modulation variables, 6Ix and 6HR. The first-harmonic re-

sponses of the upper laser level (level 2) and the ground level (level g) in phase

with the modulation are given by

6 IX(l + IR) - RI A( .9a
Re(p2,1) = (I + IR + I) 2+(wT,)2  (3.9a)

and

Re(pg,) = (1 + IR + IA) + (6wT 1 )2 (3.9b)

respectively. Similarly, the atomic response 90' out of phase with the modulation

is given by the imaginary part of P2,1

___ _ wT_ I(l+IR)-RIA (310a(I + -I-R+IJ (1+ IR+ I,)2 +(6wT,) 2
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and the imaginary part of Pg,l

Im(Pg~ ( = -bWT 1  URI - tbIA(! + IR)(31b
Im(p,,i) = + "R' + I,) (1 + IR + I4)2 + (6wT) 2  (3.10b)

The in-phase first-harmonic response of the atomic population to a mod-

ulation of either stimulated rate, R or A, is a Lorentzian of half-width at half-

maximum (HWHM) (1+IA\+IR)/T. In the limit of weak excitation (I,IR < 1)

the cycling rate is l/T1 . These Lorentzian terms give rise to homogeneous hole

burning or the l/T1 hole.' 14 The hole in the absorption spectrum of the mod-

ulation sidebands of the pump, 64I, arises from the negative term in Eq. (3.9b).

The pump experiences decreased absorption when the population can follow the

modulation frequency; another consequence of this is that a probe laser that is

being amplified will experience a modulated amplification. Modulated auiplifi-

cation is the subject of this chapter.

In the rate-equation limit we can write the propagation equation for the

probe-laser intensity as

d
-IR(t, Z) = aIR(t, z)p 2 (t, z), (3.11)

where a is the inverse Beer absorption length. Equating terms of equal time

dependence, we get an expression for the spatial dependence of the probe field,

IR:
d IR(z) = a {IR(Z)p2,o(Z) + IR(z)Re [p2,1 (z)]} . (3.12)
dz

The first term on the right-hand side of Eq. (3.12) is an exponential gain term,

which is responsible for the growth of fields modulated at frequency 6w. The

exponential gain term is independent of modulation frequency for weak modu-

lation. The second term on the right-hand side of Eq. (3.12) is a linear gain

term. This linear gain term provides an avenue for pump fluctuations to be
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transmitted to the amplified probe-laser intensity, IR(t). In our experiment,

the exponential gain term is insignificant since the amplitude of the modulation

sidebands, H1 R, remains small. It is the linear gain term that is responsible

for the initial growth of the modulation signal in the intensity of the amplified

probe laser. Furthermore it is the linear gain term that gives the amplifier a

low-pass response to pump fluctuations. The physics of this behavior lies in the

first-harmonic response of the excited-state population P2,1. In our experiment

we measure the response of an optical amplifier to amplitude fluctuations of

the pump intensity, I4(t). We have devised ii signal-limited detection scheme

to measure the spec*,rum of the amplifier's response to the fluctuations as a

function of the pump modulation frequency, 6w.

In Fig 3.2 I have plotted the real part of the first-harmonic component of

the excited-state population, P2,1 [as given by Eq. (3.9a)], for various values of

I, and small probe-laser intensity (IR < 1). It is evident from the figure that

the population behaves as a low-pass filter. The low frequency gain maximizes

for 'A = 1. The bandwidth of the gain increases with increasing pump intensity

but the maximum gain occurs for Ix = 1 + IR.

C. Experimental apparatus

A schematic of the experimental apparatus is shown is Fig. 3.3. The ex-

periment involves two dye lasers. The pump laser is a rhodamine 6G dye laser

which is tuned to a wavelength of 6000 angstroms using an intracavity Pellin-

Brocha prism. This wavelength is the center of the pump band of the alexandrite

crystal. The maximum output power of our laser at this wavelength is approx-

imately 500 mw. The second dye laser is a LDS 698 dye laser which is tuned

to the four-level vibronic transition of the alexandrite crystal. The center of
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Fig. 3.2 The in-phase first-harmonic linear gain, at the modulation frequency

of the pump laser, experienced by the probe-laser tuned to the inverted transititon in
a four-level laser system. Plotted is Re(p 2 ,1) as it appears in Eq. (3.9a). The

signal has been normalized to the maximum signal which occurs for dimensionless-

pump intensity IX=I. The linear gain is plotted for negligible probe-laser intensity

(IR<<I) for four different dimensionless pump-laser intensities: (a) IX= 0.1; (b) X=
0.5; (c) 14= 1.0; (d) lj= 3.0.
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the vibronic transition is actually at a wavelength of 7500 angstroms but we

tuned the LDS laser to 7200 angstroms instead since a laser operating at 7200

angstroms is still visible to the eye facilitating alignment.

The lasers operate in multiple longitudinal modes. The multimode opera-

tion of the lasers does not degrade the experimental results since the modulation

frequencies we used were much less than the frequency separation of the cavity

modes, and the bandwidth of the pump and vibronic transitions in alexandrite

is hundreds of angstroms while the bandwidths of the dye lasers are less than an

angstrom. The bandwidth of the laser is narrow compared with the transitions

and the modulation frequency is small compared with the free spectral range of

the laser cavities.

The alexandrite crystal can behave as a three level laser like ruby or a four-

level system like a dye. The three level operation occurs at a wavelength of 6900

angstroms while the four level vibronic operation occurs between 7000 and 8000

angstroms. In this experiment we tune the probe laser to resonance with the

vibronic transition.

The rhodamine 6G laser beam is passed through a fast acousto-optic mod-

ulator (AOM) (see Fig. 3.3). An Isomet 1205C AOM driven by a 232A-1 driver

is driven by a weak sine wave of variable frequency generated by a Wavetek

model 188 Sweep/Function Generator. The sinusoidally varying voltage causes

the AOM to diffract a sinusoidally varying amount of intensity out of the path

of the rhodamine laser beam. A weak sinusoidal amplitude modulation of the

pump-laser intensity results. The Wavetek also supplies a reference signal to a

lock-in amplifier which measures the amount of modulation in the intensity of

the amplified LDS laser.

The modulated rhodamine laser beam is now combined colinearly with the
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Fig. 3.3 Experimental apparatus in block-diagram form. I use :he t.&Ilowing
abbreviations: AOM- acousto-optic modulator, DM- dichroic mirror, L- lens; S-

alexandrite sample; P- prism; SPD- slow photo-diode; FPD- fast photo-diode.
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LDS laser beam using a dichroic mirror which reflects the rhodamine beam but

allows light from the red LDS laser to pass through. The alignment of the two

lasers are tweaked to maximize the amplification of the LDS laser beam which

is transmitted through the pumped alexandrite crystal. The colinear lasers are

focused into the alexandrite crystal sample using a 25 mm focal length lens, and

the transmitted beams are recollimated with another 25 mm focal length lens.

After being recolimated the colinear lasers are separated using a prism. The

isolated LDS laser beam is focused onto a fast photodiode whose bandwidth

is adequate to detect the AM signal in the intensity of the laser. The isolated

rhodamine laser beam is focused onto a slow photodiode which is used to measure

the average intensity of the rhodamine laser in order to determine the intensity

of the pump beam.

A modulation run consists of several modulation frequency settings. The

computer supplies a voltage to a voltage-controlled oscillator (VCO) in the

Wavetek in order to set the modulation frequency. The computer records the

in-phase and in-quadrature components of the first-harmonic response of the

intensity of the probe laser at each modulation frequency. The lock-in readings

are collected to acquire the modulation spectrum of the probe-laser amplifica-

tion. Prior to each modulation run the intensity of the pump laser is recorded

by the computer. In order to convert the voltage from the slow photodiode into

a dimensionless intensity value of the pump laser beam we record a saturation

measurement prior to taking the modulation spectra. The saturation measure-

ment is accomplished by measuring the incident and transmitted values of the

pump laser intensity through the alexandrite crystal. These values are then fit

to a simple saturated absorption theory to arrive at a scale factor for convert-

ing the voltage measured by the slow photodiode to the actual dimensionless
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intensity of the pump laser.

D. Experimental results

In Fig. 3.4 I have plotted the in-phase modulation signal measured in

the intensity of the amplified probe laser. This form of the data is useful if

one is interested in transferring information through the system with no phase

lag. Agreement between theory and experiment is good. I have plotted the

amplification spectra for four different pump laser intensities. All four spectra

are fit simultaneously with the same theory. The free parameter used in the

fitting process is the overall signal strength. The dimensionless intensity of

the pump laser was derived from the saturation data. In fitting the saturation

data I derive a scalar which relates the digitized value of the pump intensity

to the dimensionless intensity used in the theory. This scalar is then applied

to the digitized intensity measurement performed before each modulation run

in order to determine the dimensionless intensity of the laser. The in-phase

signal behaves approximately as a Lorentzian. The bandwidth of the in-phase

signal increases as the intensity of the pump laser is increased, even though the

amplification occurs at a different transition than the pumping process. As the

theory predicts the population cycling rate is increased by the pump intensity.

I have plotted the in-quadrature modulation signal from the amplified probe

in Fig. 3.5. Again I report good agreement between experiment and theory.

These curves increase in size and width with increasing pump intensity. The

in-quadrature signal behaves similarly to a dispersion curve. Since this response

lags the in-phase response by 900, the data and the theory are actually negative,

but I have inverted them before plotting.

For applications to data communication the in-phase and in-quadrature
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Fig. 3.4 Theory and experiment for the in-phase amplification signal at the
modulation frequency &S/2n. The squares represent data points and the solid

curves represent the best-theoretical fit using Eq. (3.9a). All the data shown are fit

simultaneously to the same parameters. The in-phase signals are shown for
negligible probe-laser intensity (IR<l) for six different pump intensities. The

pump intensities shown are (from bottom to top): IX = 0.05, 0.12, 0.37, 0.59,

0.89, 1.49.
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Fig. 3.5 Theory and experiment for the in-quadrature amplification signal at the
modulation frequency &o/2n. The squares represent data points and the solid

curves the best theoretical fit using Eq. (3.10a). The signal is actually negative

since we measure the modulation signal, which lags the modulation of the pump

laser by 90 degrees. With this in mind I have inverted the data and theory before

plotting. Shown are the in-quadrature signals for weak probe-laser intensity for
four different pump intensities: (a) IX = 0.05; (b) IX = 0.12; (c) IX = 0.37; (d) I.=

1.49.
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data are of interest. If, however, the effect of multiplicative noise is the issue,

then the phase of the modulation transfer is immaterial. The modulus of the

modulation signal is analogous to the noise-transmission ability of the system.15

In Fig. 3.6 I have plotted the modulus of the data (squares) and the theoretical

value for the modulus (solid curves). The modulus signal increases with pump

intensity and broadens, as did the in-phase signal. However, the modulus falls

off with increasing modulation frequency more slowly than the in-phase signal

does. The modulus behaves as the square root of the in-phase signal. The in-

phase signal falls off as a Lorentzian; therefore the noise transmission spectrum

of the amplifier is the square-root of a Lorentzian.

A final interesting way to characterize the data is through the modulation

bandwidth of the amplifier as a function of pump intensity. In Fig. 3.7 I have

plotted the half width at half maximum (HWHM) of the in-phase signal and

the signal modulus versus the dimensionless intensity of the pump laser. The

bandwidth of the in-phase signal is always smaller than that of the signal mod-

ulus. Figure 3.7 shows that the bandwidth of the amplified signal increases with

the dimensionless intensity of the pump laser. For the in-phase signal this in-

crease is linear, and the slope is just the stimulated emission rate of the pump

laser, I.,/27rT, (for alexandrite T, is the room-temperature fluorescent lifetime,

262pis). The y-intercept is the spontaneous emission rate, 1/27rT1 .

E. Alexandrite model with thermal pumping included

To demonstrate a rather esoteric application of AM spectroscopy I will

present a theoretical model for the energy levels of the alexandrite crystal which

includes the multi-level nature of the alexandrite energy level diagram and mod-

ulated thermal pumping. In fitting the data I will arrive at a parameter which
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Fig. 3.6 Theory and experiment for the modulus of the amplification signal at
the modulation frequency &i/2x. The squares represent data points and the solid

curves represent the best-theoretical fit using Eqs. (1~.9a) and (3.10a) to obtain an
expression for the modulus of p21. The moduli of the amplification signals at &w
are plotted for negligible probe-laser intensity ('R<<l) for six different pump
intensifies, IX 0.05, 0.12, 0.37, 0.59, 0.89, 1.49, as shown from bottom to top.
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Fig. 3.7 Modulation bandwidth (HWIM) of the probe-laser amplification

signal versus the dimensionless intensity of the pump laser. Plotted are the HWHM

of the in-phase signals and the HWHM of the signal moduli of the modulation-

amplification spectrum of the probe laser. The HWHM of the in-phase data signal

is represented as empty squares, and the HWHM of the signal modulus is

represented by the solid squares. The solid lines represent the theoretical

predictions.
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relates the temperature of the crystal to the intensity of the pump beam. While

this elaborate model offers no better a fit to the data than the simple four level

theory does, this treatment is more realistic in keeping with what is known

about alexandrite,18 - 23 and it provides information about the thermal state of

the crystal which is an integral part of the performance of an alexandrite laser.

In this section I will describe the equations I use to describe the alexandrite

crystal. The system of equations are based on what is known about the alexan-

drite crystals from research done at Allied Signal Corp. In this model I include

the storage level for the atomic population and the upper and lower levels of the

four-level vibronic transitions. Once again the band model developed by Fi and

Haken 16 could be used to provide a more accurate description of these levels.

However, the aim of this section is to develop an understanding of the thermal

dynamics of the alexandrite crystal. I use this five-level model to describe the

response of the alexandrite crystal to pump intensity modulations just as I did

in section B of this chapter. In describing the response of the population expec-

tation values in this model to pump modulations I develop an expression for the

temperature in the interaction region of the crystal due to heating by the incom-

plete conversion of pump photons into light. When the data is fit an accurate

figure can be arrived at for this temperature increase coefficient. In this way I

employ AM spectroscopy to develop an understanding of the thermal state of the

alexandrite crystal. In the past, photo-acoustic spectroscopy has been used to

determine the temperature change within the alexandrite crystal due to heating

by the pump.2 3 In this experiment a microphone is used to detect sound waves

generated due to the modulated convective heating of the atmosphere in the

vicinity of the pumping region. The microphone and the alexandrite crystal are

placed in an acoustic cell for this purpose. As the pump beam is modulated, the
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acoustic response of the system reveals the rate at which heat can be removed

from the interaction region by optical and thermal methods. Such parameters

as the quantum efficiency and the temperature rise can be measured in such a

manner. I will show in this section that an AM measurement involving only op-

tical detection can be used to measure the temperature of the interaction region

in the alexandrite crystal.

I start with the equations of motion of the five significant levels of alexan-

drite (see Fig. 3.8). The significant levels are the ground state g, the excited

state e to which population is pumped, the upper level of the three-level laser

system 3, the upper level of the four-level vibronic system 2, and the lower

vibronic level 1. I want to point out that a more accurate treatment of this

problem would include the vibronic multilevel nature of the state 1 (see for in-

stance Haken and Hong16 ). The equations of motion for these levels with this

notation are:

ddtP, =71PI +73P3 - ,, (3.13a)

dd- PC =APg - N PC (3.13b)

d
Tt P2 - --(P2 - PlR ) - (P2 - P3)aRT 7-"2P29 (3.13c)

d
T- P3 =(P2 - P3)RT + YePe - ITP3, (3.13d)

and

d
T-'PI =_Y2 P2 + (P2 - pl)R - -ylPI, (3.13e)

Since the decay rates - and - are rapid, the equations of motion for

PC and p, can be adiabatically eliminated from the dynamics. Also, I invoke

conservation of population in order to eliminate the p9 equation of motion.
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Fig. 3.8 Energy-level diagram for the alexandrite crystal with thermal pump-

rate RT included. The pump rate X takes population from the ground state, g, to the

excited state, e, from where it rapidly decays at the rate y. to the storage level, level

3. The thermal pump rate RT connects the storage level with the excited vibronic

level, level 2. The spontaneous optical-decay rates are denoted by I/T 3 and 1/T.

The probe-laser pump rate is denoted by R.
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Making these eliminations leaves us with the equations for P3 and p2

d-P2 = - (R + RT + '72)P2 + RTP3, (3.14a)

d
T'P3 = - (-3 + RT + A)P 3 + (RT - A)P2 + A. (3.14b)

Again I apply a modulation of the pump rate A to these equations. In this

case the modulation of the pump rate not only results in a modulation of t&C

stimulated rate R(t) but the thermal pump rate RT also becomes modulated.

The modulated parameters in this case are

,\(t) =Ao + 26A cos(bwt), (3.15)

R(t) =Ro + bRexp(iwt) + R* exp(-i6wt), (3.16)

and

RT(t) =RTo + 6RT exp(ibwt) + R exp(-iwt). (3.17)

The modulated parameters can be substituted into the equations of motion Eqs.

(3.14a-b). I truncate the coefficients in these equations to first-order with respect

to the modulated parameters to derive the recurrence relations for the first- and

zeroth-harmonic responses of the population of levels 2 and 3

(R0 + RT,O + 72 + iebW -RTo P2,1'
Ao - RT,O RT,o + AO + 3 + iSW P3,1

bRTP3,o - (bR + bRT)P2,o 1 (318)
- A + (ERT - 6A)p 2 ,0 - (bA + bRT)P3,o j

The two equations given in the matrix Eq. (3.18) can be solved simultane-

ously to find both p2,1 and p3,1. However, in order to get an analytic solution

it is first necessary to have an expression for the modulated thermal pump rate
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RT(t). To do this I assume that the thermally-induced transition rate takes the

form

RT(t) = aLo(t), (3.19)

where L,,0 is the integrated phonon irradiance and a is the cross-section for

absorption of the phonon radiation. The irradiance is integrated over all fre-

quencies capable of inducing a transition from the storage level, level 3, to a

level at or above level 2 in energy (eg. the phonon irradiance is integrated from

the 800 cm - ' separation of levels 3 and 2 to infinite frequency). I assume that

there are an infinite number of degrees of freedom within the crystal lattice and

therefore the phonon irradiance is given by Planck's blackbody distribution. In

appendix A I have calculated the phonon irradiance L1,0 capable of inducing a

transition from level 3 to an energy level at or above level 2

/87rh\ ___3__V _exp[4(t)v] -( (3 - n)!O(t)-+' (3.20)
n=0

where 0(t) = -h/kT(t). The temperature is a function of time since the time

varying absorption of the pump laser intensity induces a time-dependent heating

of the interaction region.

Once the integrated phonon irradiance is found as a function of temperature

the modulation of the temperature is derived. In appendix B I calculate the

modulated temperature T(t) due to heating by the modulated pump intensity,

I(t). I substituted the expression for the modulated temperature into the

expression for the integrated phonon irradiance given by Eq. (3.20). Then,

I linearized the resulting expression for L,,(t) with respect to bT, the weak

modulation amplitude of the temperature. The linearized expression for the

time-dependent phonon irradiance is



94

L7-h = hvO J(ATo + BT2+ CT3+ D 4) (3.21)

L~~0(t 3 = S ) ex k kTo

+ [ST (A- + 4A + 12BTo + 24CT02 + 24DT03) exp(ibwt) + C.C.]

where the coefficients A,B,C, and D are given in appendix B. In Eq. (3.21) the

temperature of the interaction region of the crystal is assumed to be of the form

T(t) = To + [bTexp(ibt) + C.C.], (3.22)

where To is the DC or time-averaged temperature given by

To = Troo. + PIA(aCP,,o + 1p3,o), (3.23)

and the modulated component of the temperature 6T is given by

T= [[a(pg,0 oIx + pg,1I,) + P(p3,0 HA + p3,1IA)]. (3.24)

The ground-state absorption coefficient a and the excited-state absorption co-

efficient P are both known quantities along with the thermal quantum efficiency

18-23 (the thermal quantum efficiency e is one minus the fluorescent quantum

efficiency). Since the saturation intensity of the alexandrite crystal is defined

in terms of the ground-state absorption coefficient, a, I normalize this quantity

to unity, and the excited-sate absorption coefficient # is normalized with repect

to af. The scalar 0 relates the dimensionless intensity of the pump laser to the

temperature of the crystal. This constant is found by fitting the data. The

phonon absorption cross section a in Eq. (3.19) is found by setting the pump

intensity to zero: the thermal pump rate is now equal to the room temperature

value. This quantity corresponds to a population lifetime of 262 Ms.



95

The expression for the time-dependent phonon irradiance in Eq. (3.21)

together with the expression for the time-dependent thermal pump rate RT(t)

given in Eq. (3.19) can be used to evaluate the DC thermal pump rate

RT,o = C ( )exp\ kTo ) (AT+B + CT 3 + (3.25)

and the expression for the modulated component of the thermal pump rate

&5RT = cr6T -,r exp k-ho

(A- + 4A + 12BT0 + 24CT2 + 24DT0). (3.26)

These expressions in Eqs. (3.25) and (3.26) can be used to solve the matrix

equation Eq. (3.18). The solutions for p2,1 and P3,1 are solved for simultaneously

in an iterative manner since the expression for 6RT contains the variable 6T

which itself depends on P2,1 and P3,1.

The resulting expression for P2,1 and that for P2,0 are used together with Eq.

3.12 in order to fit the data with this model. The results of this fit are shown in

the Fig. 3.9. In fitting the data I have evaluated the constant 0 that related the

temperature in the crystal to the intensity of the pump laser. The best fit for

the data shown in Fig. 3.9 was arrived at using 4' = 3.6°K/(unit dimensionless

intensity). This is equivalent to saying that a dimensionless intensity of 1 causes

a temperature change in the crystal of 3.6°K. This constant has been studied

in the past via photo-acoustic spectroscopy. 2 3 Photo-acoustic techniques involve

modulated heating of the sample and detection of the sound waves generated by

the periodic convective cooling of the sample by the surrounding atmosphere.

In these studies the quantum efficiency and the rate of heat absorption by the

sample can be derived. Using modulated pumping and purely optical detec-

tion methods we have derived the relation between the temperature and the
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Fig. 3.9 Theory and experiment for the modulus of the amplification signal at
the modulation frequency &o/27t. The experimental data is plotted along with the

alexandrite-thermal-pump-theory. The squares represent data points and the solid

lines represent the best-theoretical fit to the data using the thermal-pumping theory

outlined in section E of this chapter. The moduli of the amplification signal are
ploted for six different pump intensities (from bottom to top): I) = 0.06, 0.15,

0.43, 0.70, 1.06, 1.77. The thermal pump coefficient giving this fit is 3.60K per
unit dimensionless pump-intensity.
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dimensionless intensity of the pump laser. The intensity dependence of the tem-

perature of the sample we report (0 = 3.6°K/(unrt dimensionless intensity)

is in good agreement with the value of this quantity reported by Shand and

Jensson.
23

F. Conclusion

In this chapter I have reviewed an experiment studying the temporal re-

sponse of a four-level laser amplifier to a modulated pump intensity. Using a

rate-equation formalism, valid for collisionally-broadened homogeneous media, I

have derived an expression for the response of the atomic population to a weak

harmonic modulation of the pump rate of the amplifier. When the modulation

sidebands are weak the response is a Lorentzian whose HWHM is the sum of the

spontaneous-emission rate and the dimensionless intensities of the pump laser,

Ix, and the probe laser, IR (the probe laser was tuned to the inverted transi-

tion). The HWHM is the rate at which population can cycle freely through the

atomic system and is equal to (1 + IR + IA)/TI. In the limit of weak driving

(IR, . < 1) the population responds at the spontaneous emission rate 1"I 1 .

Therefore, I propose this type of AM spectroscopy as a means of determining

slow decay rates in optically active media.

I report an experimental test of these predictions. By modulating the pump

of an alexandrite crystal at a frequency 6w and measuring the amplification of

the probe laser at the modulation frequency 6w, we measure the spectrum of

the atomic response to the modulation. The probe laser undergoes modulated

amplification only when the modulation frequency is less than the population

cycling rate (eg. 6w < (1 + IR + Ix)/T). Furthermore, I showed that by

measuring the modulus of the amplification signal one can measure the response
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of the amplifier to multiplicative pump noise.

The remarkable aspect of these results is that the intensity of the pump

IA can affect the modulation bandwidth of amplification occuring at a different

optical transition in a multilevel system. The pump is not coherent with the

amplified probe, yet, through population oscillations it has a marked effect on

the modulation bandwidth of the amplifier.

In the last section of this chapter I have demonstrated a technique to mea-

sure the temperature rise of the crystal due to the incomplete conversion of pump

photons into fluorescent or stimulated-emission photons. The temperature of the

crystal due to this heating can be derived using modulation spectroscopy and a

data fitting algorithm. This AM technique is similar to thermo-acoustic tech-

niques which also involve a modulated pumping of the sample. However in the

photo-acoustic measurements a pressure transducer is needed whereas in this

experiment only intensity measurements are necessary.

The behavior and the stability of a laser depends on both the atomic dy-

namics and the cavity configuration. I have shown that a proper treatment of

the atomic dynamics must include the multilevel nature of the gain medium and

the multifrequency nature of the field.
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Chapter 4

A LASER OPERATING NEAR THRESHOLD WITH

AN AMPLITUDE MODULATED PUMP INTENSITY

A. Introduction

The work described in this chapter has been motivated by a desire to un-

derstand the behavior of laser systems subjected to noise sources. The two

types of noise sources which affect lasers are additive noise and multiplicative

noise. The dominant source of additive noise is spontaneous emission fluctu-

ations, while multiplicative noise arises from loss or gain fluctuations. In this

chapter I will study the effects of multiplicative fluctuations on the amplitude

stability of lasers.

The dynamics of a single-mode laser with multiplicative fluctuations can be

very different from those of a laser with purely additive noise.1 -13 Early evidence

of this fact came from studies of the statistical properties of lasers with mul-

tiplicative noise. Kaminishi et al.1 measured an anomalously large normalized

variance of the intensity in a single-mode laser when the laser is operated near

the lasing threshold. They attributed this effect to the presence of multiplicative

101
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noise in their laser system. A later theoretical work by Graham et al.2 provided

a theory to explain this effect which included white multiplicative noise in the

third-order equations. However, in a later experiment Short et al.3 measured

the two time correlation function of a single-mode dye laser for several pump pa-

rameters. They find that while the third-order theory with white multiplicative

noise explained the data for the laser operating near threshold, the data taken

at higher pump parameters was not well fit by this theory. This discrepancy

was later rectified by Dixit and Sahni4 , Schenzle and Graham5 , and by Fox et

al.6 Their theories included colored multiplicative fluctuations in the third-order

equations. The pump fluctuations affecting dye lasers are actually much slower

than the spontaneous emission fluctuations which are usually modeled by white

noise. The reason that the white multiplicative noise was successful in describing

the behavior of the laser near threshold is that the fast components of the white

noise were incapable of affecting the laser due to critical slowing down in the

laser dynamics. Higher above threshold the high frequency components of the

white multiplicative noise affected the theoretical predictions in a physically in-

correct manner leading to a disagreement between experimental and theoretical

results.

Multiplicative noise causes other interesting effects in lasers operating near

threshold. Roy and Mandel' observed a double-peaked probability distribution

in a two-mode dye laser operating near threshold. This phenomenon was at-

tributed to the competition between the counterpropagating modes in the laser,

however their data was best fit when the affects of multiplicative fluctuations

were included in their theory. Jung and Piskeng predicted that a double-peaked

intensity-distribution function results when colored multiplicative fluctuations

are included in the laser theory. The significance of this result is that the double-



103

peaked distribution is accompanied by a discontinuous mode of the intensity of

the laser as the pump parameter is increased. This dis..ontinuity is an indication

of a first-order phase transition. The existence of the double-peaked distribu-

tion function and a first-order phase transition was experimentally observed in

a single-mode dye laser by Lett et al.' More recent experiments in a Helium

Neon laser system with white multiplicative noise exhibited only second order

phase transition behavior and no double-peaked distribution was observed.' 0

More experiments need to be done to understand this phenomenon.

Researchers in the field of laser physics have also found it useful to study the

first-passage-time (FPT) statistics of lasers. The statistics of the characteristic

time in which a laser passes from the off state to the on state is affected by the

presence of multiplicative fluctuations. In single mode lasers 1 1 - 13 researchers

find that the second-order statistics of the FPT data are best modeled by the

inclusion of multiplicative fluctuations in the theory. The two mode laser FPT

problem is also best fit by a theory which includes multiplicative fluctuations14 .

These studies have concentrated on the dynamics of single-mode and two-

mode lasers. To date, little attention has been given to extremely multimode

laser systems. Also, most treatments have concentrated on the laser intensity,

while the atomic behavior has been elininated from the dynamics. In this

chapter I address both problems by examining the response of the total inten-

sity of the laser and the response of atomic nversion of the atoms in the gain

medium of multimode lasers subjected to multiplicative fluctuations. I apply

weak amplitude-modulation spectroscopy to a homogeneously broadened laser

operating near the lasing threshold. The pump intensity of the laser is modu-

lated and the behavior of the system, in response to the modulation, is studied.

In particular, I treat the special case of a collisionally broadened four-level laser
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system. This model was selected because it is a fairly accurate and popular

description for a dye laser which is the subject of the experiment. Recently, a

more thorough description of dye-laser systems has been proposed by Fu and

Haken15 . Their model describes the lower laser level as a band of vibronic levels.

This model is accurate and has been successful in the description of instabilities

in dye lasers; however, we find that the four-level theory is quite adequate in

the description of the dynamics in our experiment.

I will formulate a theoretical analysis based on the four-level population rate

equations for the material and the intensity rate equation for the field inside the

cavity. The theoretical analysis is a single-mode traveling-wave theory which I

compare with an experiment performed using multimode dye lasers. I show that

the response of the total intensity of multimode lasers to multiplicative pump

fluctuations is identical to the response of the intensity of a single mode laser.

This agreement depends on the condition that the fluctuations occur over a

bandwidth which is small compared to the frequency separation of longitudinal

cavity modes in the multimode laser. Ogawa and Hanaxnura 16 show that when

the modulation depth is large and the modulation frequency is comparable to

the intermodal frequency spacing the operation of the laser becomes unstable.

In this chapter I measure the response of the laser intensity and the fluores-

cent intensity emitted by the atoms in the interaction region of the laser. The

laser intensity and the fluorescent intensity represent the two output ports by

which modulation energy may leave the laser system. I also consider the input

port for the modulation energy. I measure the absorption of the modulation

energy from the pump intensity. This is the third and final port for the modula-

tion energy in or out of this system. With this information I perform a complete

energy-balance analysis of the problem.
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B. Behavior of a laser operating near threshold

A laser is an example of a fairly simple optical systecm which displays thresh-

old behavior and critical slowing down. These are universal properties of nonlin-

ear systems operating near a critical point. This behavior has attracted numer-

ous theoretical and experimental researchers to the field of laser instabilities. -24

In this section I will review some of this work to prepare the reader for the ex-

perimental topic of this chapter. Perhaps the most logical place to start this

problem is with the basic equations of motion for a laser. For an idealized four-

level laser these are the equation for the excited-state population of the inverted

transition, the equation for the atomic polarization, and the equation for the

electric field inside the cavity. Since the experiment I am reporting involves a

dye laser which is strongly collisionally broadened, I start with the rate equations

for a four-level laser which include the rate equation for the atomic population

in the excited state d 1p
dtp I±P+ ~p + (4.1)

and the rate equation for the intensity of the laser field inside the cavityd I 9P _L]42
dt = I TIC I. I42

The dimensionless intensity of the laser, I, is defined as the rate of stimulated

emission times the excited-state population lifetime T1. The dimensionless in-

tensity of the pump is I. (the dimensionless intensity of the pump is the pump

laser's stimulated rate times TI), the passive cavity decay rate is Tr, and the

gain is given by
9 c-, (4.3)

where a is the integrated absorption coefficient (i.e., the gain per pass) of the

interaction region of the gain medium, L is the optical path length of the cavity,
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and c is the speed of light. Recently, a more accurate model for the material

dynamics of dye lasers has been developed. Fu and Haken' s have developed a

band model which takes into account the multilevel structure of the dye molecule.

However, we find that simple four-level rate equations are adequate to describe

the dynamics observed in our experiments.

Setting the time derivatives in Eqs. (4.1) and (4.2) equal to zero, we solve for

the steady-state response of the excited-state population and the laser intensity.

Setting the time derivatives to zero in Eq. (4.1) yields the steady-state value for

the excited-state population

IP (4.4)

This relation is always true in the steady-state. However the steady-state solu-

tion to Eq. (4.2) yields two possible steady-state conditions for the intensity of

the laser I. The first possibility we will consider is the steady-state solution of

the laser intensity for below threshold operation which

.8 = 0, (4.5a)

and then the expression for the steady-state population becomes

I
Pas - (4.5b)

The interpretation of Eqs. (4.5a) and (4.5b) is that when the laser is off the

atomic population behaves as it does in the absence of the laser cavity. When you

perform a linear stability analysis about this laser-off solution (see Appendix C),

two eigenvalues result. One eigenvalue is always negative (indicating stability)

for all values of the pump, I,,. The other eigenvalue is negative for values of the

pump intensity such that

Ip :5 I p,t,.. (4.6)



107

This is another way of saying that the laser stays off when the pump intensity

is below the threshold value.

Next we consider the on solution for which the laser intensity is nonzero.

The steady-state solution for the intensity is

I. = P- 1 (4.7a)
Ip, thr

and substituting this expression for I,, into Eq. (4.4) yields the result that the

population, and therefore the gain, clamps to a constant value and is independent

of the pump intensity above threshold,

Ps = 1 (4.7b)

This phenomenon is referred to in the literature as gain or inversion clamping25

and it represents discontinuous behavior for both the laser intensity and the

inversion as the pump intensity is varied near its threshold value, Ip,t,,.. Once

again a stability analysis (Appendix C) yields that one eigenvalue is negative for

all values of pump intensity while the other eigenvalue displays an instability at

Ip = Ip,thr. This second eigenvalue is

(4.8)l1 + IoI. + IP"*

The significance of this eigenvalue will be made apparent later in this chapter.

The discontinuous behavior in the atomic variables can be seen if we plot the

intensity of the laser versus pump power and the atomic inversion versus pump

power in Fig. 4.1. The unstable branches of the solutions are represented with

dotted lines while the stable branches are represented with solid lines. The laser

intensity is zero until the pump intensity reaches the threshold value. Similarly,

the excited-state population increases smoothly with increasing pump power
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until the threshold pump intensity is reached at which point there is no further

increase.

Up until now we have studied the static behavior of a laser. The dynamic

behavior of a laser can be quite different from the steady-state behavior and

furthermore there is much more information to be gained by considering the

dynamic response of a nonlinear system to transients in the behavior of a control

parameter, such as the pump intensity in this case. To illustrate the dynamic

behavior of a laser near the lasing threshold I have plotted data from a simple

experiment in which the pump intensity is swept back and forth through its

threshold value in a linear fashion. The results of this experiment are shown

in Figs. 4.2(a-d). In Fig. 4.2(a) I have plotted the intensity of the laser as a

function of the pump intensity for a slow sweep rate of 100Hz. This behavior

is quite similar to the steady-state behavior plotted in Fig 4.1. The similarities

disappear as the sweep rate is increased to 40 kHz for the data shown in Fig

4.2(c). In this case the laser seems to remain off as the pump intensity is

increased beyond the threshold value and then the laser jumps rapidly to the

on state. As the pump intensity is rapidly decreased the laser remains on past

the threshold intensity instead of returning abruptly to zero as in the steady-

state case. A similar behavior is seen in the response of the intensity of the

fluorescence emitted from atoms in the interaction region of the gain medium.

In Fig. 4.2(b) the fluorescent intensity versus pump-laser intensity is plotted for

a sweep rate of 100Hz. The behavior of the fluorescent intensity as a function

of pump intensity displays a discontinuity as did the response of the excited-

state populaton in Fig. 4.1. The response of the fluorescent intensity does not

flatten out completely as in Fig. 4.1 however. The reason for this is that the

multi-level nature of the dye molecule allows for a build-up of population in
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Fig. 4.1 Steady-state response of the laser intensity and the

fluorescent intensity. The steady-state response of the intensity of a canonical

four-level laser is plotted versus the pump intensity in the upper graph in this
figure. The steady-state behavior of the fluorescent intensity for a four-level

laser is plotted in the lower graph of this figure. The solid lines represent the

behavior of the stable solutions for these variables above and below threshold

while the dotted lines represent the behavior of the unstable "off-solutions"

above threshold.
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the lasing levels and therefore the excited-state population merely increases at

a different rate above threshold rather than clamping to a constant value. This

discontinuous response changes when the sweep rate is increased to 40 kHz as in

Fig. 4.2(d). The fluorescent intensity overshoots the on solution and a hysteresis

loop develops here as in the response of the laser intensity. This behavior has

been studied theoretically and experimentally and is referred to as a delayed

bifurcation.1 7-2 2 The laser's behavior does not make the transition to the stable

solution when a control parameter is swept faster than some characteristic time

constant.

The delayed bifurcation in the behavior of the laser's intensity near the

first threshold has been theoretically treated by Mandel and co-workers 17 and

others11 - 21. They predict the delayed bifurcation as a control parameter is

swept through a critical point. Sharpf et al.2 1 explored the response of an

argon ion laser as the loss of the cavity is swept through the threshold value.

They found that the laser undergoes a delayed bifurcation as the loss is swept

through the threshold value. Furthermore, the width of the delay in units of

loss increases as the rate of the sweeping is increased. In a similar experiment

Papoff et al.22 studied a delayed bifurcation with a square-wave modulation. The

mean switching time increases as a control parameter is brought near a period-

doubling bifurcation point. Also, Gage and Mandel2" carried out an experiment

in a bidirectional ring dye laser. They observed hysteresis in the first passage

time of the opposite running modes of the ring laser as the asymmetry of the

cavity loss was swept at a rate of 10 Hz. These experiments demonstrate the

usefulness of modulating the gain or the loss of a laser to study non-steady-

state laser dynamics. The presence of the delayed bifurcation in the dynamics

of the laser is an example of critical slowing down. The time constant which



111

II I I I
-- 900 .

(a) (c)

• 450
C

-900 )(d)

.)
45 0 -

I I I ,I I
~0

0 400 800 0 400 800

pump-laser intensity (digit. units) pump-laser intensity (digit. units)

Fig. 4.2(a-d) Dynamic response of the dye-laser intensity and the fluorescent

intensity. The intensity of the dye laser is plotted versus a pump-laser intensity

which is swept with a triangle wave at: (a) 100 Hz and (c) 40 kHz. The intensity of

the fluorescence emitted from the interaction region of the gain medium is plotted

versus a pump-laser intensity which is swept with a triangle wave at: (b) 100 Hz

and (d) 40 kHz.
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characterizes the response of the laser is large because the driving forces (i.e.

the stimulated emission rate) diminish to zero at the lasing threshold.

The critically-slowed behavior of a laser is manifested in the laser's inability

to follow the rapid temporal fluctuations of the pump intensity. These effects

can in part be characterized by examining the power spectrum of the laser's

intensity when it is driven by a fluctuating pump intensity. Yu et al.24 measured

the power spectrum of the intensity of an argon-pumped single-mode cw dye

laser. The intensity of the laser behaves as a low-pass amplifier to the amplitude

fluctuations of the pump. Furthermore, the bandwidth of the fluctuations of

the intensity of the laser decreases as the intensity of the pump is reduced to

the threshold value. This intensity-dependent bandwidth is a good example

of critical slowing down in a nonlinear system operating near a critical point.

Similar behavior has been predicted in an electrically pumped solid-state laser

with current noise. Agrawal and Roy 25 show that at high intensities, the power

spectrum of the intensity of a semiconductor laser is affected by current noise

in the pumping mechanism. The bandwidth of the intensity noise spectrum

of a laser is determined by a systematic time constant that depends on the

intracavity laser-field intensity.

These studies have concentrated on the dynamics of single-mode lasers. To

date very little attention has been given to multimode systems. How does the

behavior of the intensity of a multi-mode laser compare to the behavior of a

single mode laser's intensity? Also, most treatments have concentrated on the

laser intensity, while the atomic dynamics have received little attention. In this

chapter, I address both problems by examining the response of the total inten-

sity and the atomic inversion in multimode lasers subjected to multiplicative

fluctuations. I calculate the response of a single-mode laser to a sinusoidally
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modulated pump. Expressions for the first-harmonic response of the laser in-

tensity and the excited-state population of the laser transition are derived. I

compare these theoretical predictions with experiments in multimode cw dye-

laser systems. Amplitude modulation (AM) spectroscopy is used to probe the

near-threshold dynamics of these lasers. This form of spectroscopy has been

used to probe the absorption spectrum of strongly driven atomic systems.27- 3 1

In this experiment I modulate the intensity of the pump beam and study the

total intensity of the laser and the intensity of the fluorescence emitted by atoms

in the gain medium (the fluorescent intensity is proportional to the excited-state

population). I report a phase sensitive measurement of the modulations induced

in the laser and the fluorescent intensities using a lock-in amplifier. The mod-

ulation frequency is varied to obtain a spectrum of the laser's response. The

results of the experiment will be quantitatively compared with the single-mode

laser theory.

The response of the fluorescent intensity to a modulated optical field has

been considered by Saxena and Agarwal. 32 They treat the case of a two-level

atom in free space subjected to an amplitude modulated field. The calculations

reveal that the fluorescence responds as a Lorentzian whose width broadens as

the intensity of the laser is increased and that for large field strengths a peak

occurs in the AM spectrum of the fluorescence at twice the Rabi frequency. This

result is quite interesting though not closely related to the present work.

C. Theory of a laser with pump-intensity modulation

From here on I will not be concerned with a steady-state analysis but in-

stead will be analyzing the temporal response of the laser by modulating the

pump intensity I(t) and observing the response of the laser intensity I(t) and
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the response of the excited-state population expectation p(t) to the modulated

pump. The pump intensity 4,(t) is weakly modulated at the angular frequency

bw as

I4(t) = 4p + 26I cos(6wt). (4.9)

The dc or time-averaged pump intensity is represented by 7,, and the amplitude

of the modulation sidebands is represented by 6ir, which is considered small in

this experiment. The modulation frequency 6w is expressed in units of radians

per sccond.

Floquet's theorem tells us that in the stationary state, the excited-state

population and the laser intensity will respond at higher harmonics of the mod-

ulation fundamental 6w. Since we are interested in the stationary-state response,

we can expand the temporal respcnse of these variables in a harmonic series of

overtones of 6w. The excited-state population can be written as

00

p(t) =- p exp(inbwt), (4.10a)
ft=-00

and the intensity of the laser is given by

00

I(t) = 1 Inexp(inb6ut). (4.10b)
n=-oo

The nth-harmonic response of the excited-state population is p,, and the nth-

harmonic response of the laser intensity is I,,. When we substitute Eqs. (4.10a)

and (4.10b) into Eqs. (4.1) and (4.2) and equate terms of equal time dependence,

we get the following recurrence relation:

(1 + 7, + in6wT)p,

=-EPMI"-M - 6IP(P"+I + Pn-1) + lpb",°
M=00

+ 5I,(b5,, + ,.),(4.11)

.. . - -~ u =• n n n m nn n nmu nnnnmnunn
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from the excited-state population rate equation, Eq. (4.1), and

(1 + inbwrc)I. = 9gr PmIn-m, (4.12)
?I= -00

from the intensity rate equation, Eq. (4.2), where bij is the Kronecker delta

function.

We can analyze these recurrence relations for a particular value of the sub-

script n to obtain the nth-harmonic response of I(t) and p(t). Since we use

weak modulation in this experiment, we can truncate the harmonic expansion

of the excited-state population and that of the intensity of the laser to first order

(n=l). Likewise, we ignore all products which are of order two or higher (i.e.

neglect terms such as b1Ipi and p'Il). With these simplications, we get four

recurrence relations: two from the excited-state population recurrence relation,

Eq. (4.11) for n = 0 and n = 1; and two from the intensity recurrence rela-

tion, Eq. (4.12). For the index n = 0 we recover the steady-state solutions we

obtained without the modulation (i.e., p0 = p,, and I0 = I,,). This result is

consistent with the perturbative approach we are using. Solving Eqs. (4.11) and

(4.12) for n = 1, we get the first-harmonic response of the intensity of the laser,

h= 1 1 1] b [Io - (bwT,)(6wrc)] - i[l +I + Io)(bw5rc)] (4.13)

P = 1 (I +7p + Io)(6wr7)] 2 + [10 - (bUwT 1)(bwrC)] 2 '1

The time-averaged responses of the intensity and the excited-state population

are Io and p0, respectively.

The first-harmonic response of the excited-state por-ulation can be derived

in a similar manner, and the result is

Pi = 0 - po)(bWrc)6 (1 + IP + Io)(br,)] + i[10 - (b6wT 2)(Wr,)] (4.14)'[(1 + 7 , + Io)(bwr,)]2 + [Io - (bwT,)(6wrc)]2  (

To understand this phenomenon better, I plot the response of the intensity of

the laser and of the excited-state population in the same plot in Figs. 4.3(a)
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and 4.3(b). In these figures the population lifetime is one one-hundredth the

cavity lifetime T = 0.01r,, and the laser is operating 10% above threshold, or

10 = 0.1. The first thing to notice is that the in-phase first-harmonic response

of the laser intensity and the first-harmonic response of the excited-state pop-

ulation cross each other at the half-maximum values for each. The population

response is a high-pass filter for fluctuations the laser cannot follow. Further-

more, in this limit where (bwT)(6wrc) < I0, the response of the intensity of

the laser to a modulated pump intensity is a Lorentzian whose half-width at

half-maximum (HWHM) is equal to the reciprocal of the cavity lifetime 1/r

times the "saturated" pump parameter fl, which I define as

1+0 + (4 .15a)

The bandwidth of the laser turns out to be equal to the stability exponent of the

laser [see Eq. (4.8)]. By measuring the modulation bandwidth of the laser we

are measuring the stability exponent of the laser! In the parameter regime of the

experiment, the laser and pump intensities are nonsaturating (i.e., I0, 7 P < 1);

consequently, the pump parameter becomes

S -= 10 -- P .(4.15b)Ip,ihr

This "unsaturat,-d" pump parameter is in agreement with previous definitions

of the pump parameter' [see Eq. (4.7a)].

The response of the excited-state population displays a dip at low modu-

lation frequency. I consider this result to be a manifestation of the effects of

inversion clamping at nonzero frequencies. Another way to interpret this result

is that the laser acts as a pump-intensity noise eater, keeping the inversion of

the atoms constant in the presence of low frequency punip fluctuations.
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Fig. 4.3(a) The in-phase first-harmonic response of the laser intensity,
Re(I 1 ), and the in-phase first-harmonic response of the excited-state

population, Re(p 1), versus the normalized pump modulation frequency &imtc .

The parameters used in this figure are T1 = 0.0l c , and 10 = 0.1 (ie. the laser

is 10% above threshold).
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Fig. 4.3(b) The in-quadrature first-harmonic response of the laser
intensity, Im(1I ) , and the in-quadrature first-harmonic response of the

excited-state population, Im(pl), versus the normalized modulation frequency

8zmc. The parameters used in this figure are T1 = 0.01rc, and I0 = 0.1 (ie.

the laser is 10% above threshold).
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D. Experimental Apparatus

1. The amplitude stabilization process

As I showed in the theoretical section, the temporal response depends

strongly on the pump parameter or rather the amount the laser is operated

in excess of threshold. In order to perform an accurate measurement of the laser

response and compare it quantitatively with the theory you must be able to

accurately determine the pump parameter and prevent it from varying during

the modulation measurement. This is the crux of the experimental technique.

The pump parameter must be constant during a modulation spectral measure-

ment. To solve this problem we constructed a unique amplitude stabilization

circuit. The circuit holds the output intensity of the laser fixed with respect

to low frequency fluctuations while giving little correction at the frequencies

used to modulate the pump intensity for the modulation experiment. In simpler

terms, I constructed a low frequency amplitude stabilization circuit. A unique

aspect of this circuit is that the output intensity of the laser is being stabilized

by adjusting the intensity of the pump laser.

In order for the reader to appreciate the purposefulness of the inclusion

of this circuit I will perform a brief analysis of the measurement of the pump

parameter and the effect of fluctuations on this measurement. Consider a mea-

surement of the laser intensity 10. In general the measurement will yield a result

10 ± AIO. We can arrive at an expression for Ao by partially differentiating Eq.

(4.15b)

AIo = A _ Ap,th, I (4.16)
Ip,thr Ipthr Ip,thr

The first term on the right hand side of Eq. (4.16) describes fluctuations in the

output intensity of the laser arising from fluctuations in the pump amplitude.

These fluctuations should be corrected by the circuit and cause no further dif-
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ficulty. It is the fluctuations described by the second term on the right hand

side of Eq. (4.16) which cause problems. These fluctuations arise from a change

in the threshold pump power or rather a change in the amount of loss in the

cavity. We cannot compensate for these losses properly by adjusting the pump

power. The loss value has been changed and all we can do is compensate for this

change in loss by adjusting the pump power accordingly. However, in doing this

we are actually keeping the pump parameter constant which is what we want

to do. However the systematic time constant depends on the product of the

pump parameter and the reciprocal cavity lifetime (1TI), or cavity loss rate.

Therefore a large drift in the loss of the cavity would cause experimental error

beyond our capacity to compensate.

Since the entire experiment is carried out over a small range of pump-

parameters (0 < 0.15) great care must be taken to insure accuracy in the deter-

rmination of the pump parameter. In fact the steps taken in pump parameters

between successive spectra is often less than 1%! If we look at Eq. (4.15) it

is easy to see that a drift of one percent in either the pump intensity I. or a

comparable drift in the threshold I,,th, results in an error comparable to the

stepsize of the data. This completely blurs the results we are after. Instead of

relying on a direct measurement of these individual quantities, we measured only

I0 for each spectra and infer the value of the pump Ip from this measurement

and a slope efficiency measurement made prior to each data set. That is to say

that the value of I. is obtained by dividing the laser intensity I0 by the slope

efficiency ,o/6Ip.

Now that we are content with the necessity of the stabilization circuit and

its application we can discuss the circuit itself. In Fig. 4.4 is a block diagram of

the stabilization circuit and the lasers it acts upon. A fast photodiode is used to
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Fig. 4.4 Block diagram of the amplitude stabilization aparatus. The

sign,l from an amplified fast photodiode is fed to the micro computer and the
stabilization circuit electronics. The circuit performes a comparison with a DC

voltage supplied by the computer and sends an error signal to the acousto-

optic modulator (AOM). The AOM diffracts a variable amount of intensity

out of the pump-laser beam to control the dye-laser intensity.
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measure the output intensity of the dye laser. The signal from this detector is

fed to the circuit which prucesses .he signal and supplies a controlling voltage to

the acousto-optic modulator (AOM) positioned in the path of the argon pump

beam before it hits the dye laser. The AOM diffracts a variable percentage of the

pump beam intensity out of its path to the dye laser. In this way the voltage

from the stabilization circuit adjusts the pump intensity. Since the detection

of the error signal at the photodetector occurs after the controling transducer

(the AOM) this is a closed-loop stabilization process. We used the Intra Action

ADM-40 acousto-optic modulator with the DE-40M VCO Deflector Driver for

the closed-loop stabilization.

In Fig. 4.5 is a detailed circuit diagram of the stabilization circuit. The

design is quite simple. The voltage from the photodiode is fed into the first

stage amplification of 10x. After the signal is amplified the second op-amp takes

a difference between the amplified signal and a DC voltage, which is set by the

computer and a coarse-adjustment potentiometer. The feedback for the second

op-amp is a unique design which provides a large low-frequency gain without

the need for a separate woofer device. This feedback is similar in nature to

the design discussed in Chapter 3 for the laser-frequency stabilization circuit.

The components in this circuit were chosen to provide minimal correction and

therefore little phase error at 5 kHz which is the lowest frequency used in the

modulation measurement. All op-amps used in the cicuit are Motorola 356.

2. Measuring the AM spectrum of the dynamic variables

In this section I describe the experimental measurement of the frequency re-

sponse of multimode ring and standing-wave dye lasers operating near threshold.

A diagram of the experimental apparatus is shown in Fig. 4.6. A commercially
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Fig. 4.5 Circuit diagram for the low-frequency amplitude stabilization circuit.
The signal from the intensity detector is compared via a subtraction with a voltage
input from the computer digital-to-analog converter. The right-most op-amp
performs this subtraction and supplies the resulting voltage to the acousto-optic
modulator (AOM) to adjust the pump-laser intensity as necessary. All op-amps are
Motorola 356 type.



124

available dye jet supplied by Coherent Inc. is used in all the laser cavities dis-

cussed. The dimensions of the jet are 3 mm by 0.3 mm. The jet is run at

approximately 30-35 psi. with a mixture of ethylene glycol and rhodamine 6G.

The concentration of the dye is approximately 1.5 mg/liter giving a single-pass

absorption of the 5145 angstrom argon line of 95%. Two 5 cm radius of curva-

ture high-reflector focusing mirrors are employed to focus and recollimate the

laser through the dye jet. One of the mirrors also serves to focus the argon pump

beam into the dye jet. The interaction region is near the waste of the pump laser

giving a 10-15 p diameter interation region. A knife-edge high reflector mirror

is used in all cavities to allow the argon pump beam to be brought in parallel to

the cavity axis (see Fig. 4.6). In the case of the high-Q cavities, a fourth high-

reflector is used; otherwise, a 5% output coupler is used. No dispersive elements

are used in any of the cavities. Furthermore, the lasers operate in an extremely

multimode state as was verified using a Fabry-Perot interferometer. In fact, the

lasers' time-averaged spectra each consisted of hundreds of longitudinal modes

at the highest pump settings used in the experiement, and at the lowest pump

settings the spectra consisted of tens-of-modes.

The argon pump beam is brought in parallel to one arm of the laser cav-

ity. The pump beam passes through both AOM1 and AOM2 before impinging

upon the dye jet. The first acousto-optic modulator, AOM1, is driven by the

slow amplitude noise-eater circuit to stabilize the dye-laser intensity. The sec-

ond modulator, AOM2, is the Isomet 1205C modulator driven by the 232A-1

driver. The AOM2 is driven by a Wavetek model 188 Sweep/Function Gener-

ator. The Wavetek supplies a sinusoidally varying voltage to drive the AOM2.

The Wavetek accepts an external voltage over the range ±1 Volt to vary the

oscillator frequency remotely. The computer sweeps the frequency during the
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Fi g. 4.6 Experimental setup. The following labeling conventions are

used in this figure: AOM1- acousto-optic modulator for amplitude-

stabilization servo circuit; AOM2- acousto-ptic modulator for modulating the
pump intensity; BS- beam splitter, M- mirror, Dl- detector for measuring the

argon-ion pump-beam intensity; D2- detector for measuring the dye-laser

intensity.
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experiment and also sets the offset voltage for the amplitude noise eater cir-

cuit. The detector D2 measures the dye-laser intensity. The signal from this

detector is fed to the lock-in amplifier (EG&G PARC model 5210 dual-phase

Lock-in Amplifier). The lock-in amplifier evaluates the signal at the modulation

frequency by performing a phase sensitive measurement. The reference signal

to the lock-in amplifier is provided by the Wavetek signal generator. The in-

phase and in-quadrature signal from D1 are reported by the lock-in amplifier

via an IEEE parallel interface to the PDP 11\23 microcomputer. The time-

averaged dye-laser intensity is also recorded by the computer along with the

time-averaged argon pump-laser intensity, as measured by detector Di. To ob-

tain a slope-efficiency measurement we sweep the pump intensity between the

threshold value and a value 20% above threshold and record the dye-laser and

pump-laser intensities at each setting. The slope and intercept of this data are

used in determining the value of the dimensionless intensity, Io, of the dye laser.

This measurement is crucial to fitting the data.

E. Discussion of experimental results

1. Multimode lasers and single-mode theory

In the first part of the experiment I show that single-mode traveling wave

laser theory is an accurate prediction of the dynamics of the total intensity of

multi-mode lasers with a fluctuating pump intensity. Sinusoidal amplitude mod-

ulation is applied to the pump intensity of these multimode dye lasers and the

response of the output intensity of the laser is studied with phase sensitive de-

tection techniques. In particular, the experiment exemplifies the critical slowing

down of the temporal behavior of the total intensity of these lasers. In this

section I analyze high-Q cavities in which all the mirrors are high reflectors.
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The passive-cavity lifetimes of these laser cavities are maximized in each case by

extcnding their lengths to 1 meter for the standing v;ave cavities and 2 meters

for the ring cavities. The free spectral range of these cavities is about 150 MHz.

These high-Q cavities typically have lifetimes rc on the order of 200-400 ns.

The first cavity I consider is the high-Q standing wave cavity. This cavity

is actually unstable to single longitudinal mode oscillation due to the effects of

spatial hole burning. In Fig. 4.7 I plot the dye-laser intensity as a function

of time after the pump is extinguished in a heavy-side step fashion. All the

data points are fit to an exponential, except for those earlier than 100 ns after

the start of the decay, since these times coincide with the turn-off time of the

pump intensity. This procedure insures that the lifetime obtained from the

fit is truly the passive-cavity lifetime instead of an active-cavity lifetime. I

assume here that the unpumped dye molecules are not absorbers at the dye

laser wavelength. The solid line in Fig. 4.7 represents the best theoretical fit to

the data corresponding to a cavity lifetiie of 252 ± 4 ns. I will compare this

directly measured cavity decay rate with the lifetime derived from fitting the

amplitude modulation spectrum of the laser.

In Fig. 4.8 1 plot the signal from the output of the lock-in amplifier (squares)

versus the modulation frequency, bw/27r, for several different pump powers.

This voltage corresponds to the in-phase first-harmonic response of the dye-

laser intensity. The curves broaden as the pump parameter, 0, is increased [see

Eqs.(4.15a) and (4.15b)]. All modulation spectra shown in Fig. 4.8 are fit si-

multaneously using the time-averaged intensity Io, which is directly measured

before each modulation run, and the data points from the lock-in as constraints.

The best theoretical fit using single-mode laser theory are also shown in Fig.

4.8 (solid lines). The cavity lifetime derived from fitting the data in Fig. 4.8
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Fig. 4.7 Dye-laser intensity vs time for a multimode, high-Q

standing-wave laser. This figure shows the decay of the dye-laser intensity

after a rapid and complete turn-off of the pump beam. The solid line

represents the best-fit exponential whose time constant is 245 ns.
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Fig. 4.8 The in-phase first-harmonic response of the laser intensity 11 vs the

pump modulation frequency &)/2n. I plot the in-phase or x-channel output of

the lock-in amplifier vs frequency for a high-Q standing-wave laser for several

values of the pump parameter 13 given in Eq. (4.15). The curves, from left to

right, correspond to 3=0.011, 13-0.021, 3=0.031, 13--0.041, P3=0.050,

3=0.060, and 3=0.070. The solid lines represent the single-mode best-

theoretical fit to all the data fit simultaneously. The cavity lifetime which gives

this fit is 230 ns.
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Fig. 4.9 The modulation bandwidth (HWHM) of the in-phase first-harmonic

response of the intensity of the laser vs the pump parameter P. The curves

shown in Fig. 4.8 were individually fit to Lorentzians and the bandwidth

(HWHM) of these fits are plotted here with squares. The solid line represents

the result of a linear regression performed on these points. The slope of this
line is proportional to the reciprocal of the cavity lifetime Ic. The cavity

lifetime we get from the slope is 235 ns.
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is 230 ns, which agrees with the lifetime we measure directly from the data in

Fig. 4.7 to within 7%. This implies that single-mode theory is quite adequate

in describing the behavior of the total intensity of a multimode standing-wave

laser operating near the first threshold.

Another way of analyzing the data is to separately fit the individual modula-

tion spectra to Lorentzians and plot the HWHM of each file versus the measured

pump parameter 3. In Fig. 4.9 1 plot the HWHM of the individual fits together

with the best-fit straight line through the data. The reciprocal of the slope of

this line is equal to 27r times the cavity lifetime r. The value of the cavity

lifetime obtained from the slope of this curve is 235 ± 3 ns. which is also in close

agreement with the value obtained directly from the data shown in Fig. 4.7.

I carried out the same experiment in a high-Q bidirectional ring laser. For

this case, I measured the total intensity exiting the ring cavities from one direc-

tion of propagation. The results are independent of which direction of propaga-

tion is studied. The data in Fig. 4.10 shows the exponential decay of the laser

intensity. The exponential fit (solid line) corresponds to a lifetime of 329 ± 4

ns. In Fig. 4.11 I plotted the in-phase response of the total intensity exiting

the laser cavity from one propagation direction of the multimode ring dye laser.

The cavity lifetime which gives the best simultaneous fit to all these data using

single-mode theory is 335 s. In Fig. 4.12 1 plotted the HWHM of the individual

Lorentzian fits to these data versus the pump parameterj, given in Eq. (4 .15a).

A linear regression is performed on this data to obtain a cavity lifetime of 344

± 2ns. This value for the lifetime is within 5% of the value obtained directly

from the data shown in Fig. 4.10.

The conclusion is that single-mode laser theory accurately describes the

behavior of the total intensity of multimode lasers. Experimental results with



132

I I I I

1.0 -. Wft

,

" 0.5

0.0 I ! I I

0 1 2 3
time (gs)

Fig. 4.10 Dye-laser intensity vs time for a multimode, high-Q

bidirectional ring laser. This figure shows the decay of the dye-laser intensity

propagating in one direction of the ring laser after a rapid and complete turn-

off of the pump beam. The solid line represents the best-fit exponential

whose time constant is 329 ns.
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Fig. 4.11 The in-phase first-harmonic response of the laser intensity I I

vs the pump modulation frequency 8 0/2x. I plot the in-phase or x-channel

output of the lock-in amplifier vs frequency for a high-Q bidirectional ring laser
for several values of the pump parameter A given in Eq. (4.15). The curves,

from left to right, correspond to --0.19, P--0.036, P--0.053, P--0.070,

=0.085, 13=0.100, and P=O. 115. The solid lines represent the single-mode

best-theoretical fit to all the data fit simultaneously. The cavity lifetime which

gives us this fit is 335 ns.
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Fig. 4.12 The modulation bandwidth HWHM of the in-phase first-

harmonic response of the intensity of the laser vs the pump parameter 0. The

curves shown in Fig. 4.11 were individually fit to Lorentzians and the

bandwidth (-WHM) of these fits are plotted here with squares. The solid line

represents a linear regression performed on these points. The slope of this line

is proportional to the reciprocal of the cavity lifetime 1/ c . The cavity lifetime

we get from the slope is 344 ns.
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ring and standing-wave laser cavity configurations confirm this conclusion.

2. Laser and fluorescent intensity AM spectra

To connect the effects of critical slowing down in the laser intensity with the

effects observed in the fluorescent intensity, I have characterized both quantities

for the same cavity configurations. Another detector is used to measure the

intensity of the fluorescence emitted off-axis by atoms in the interaction region.

A lens is used to collect the fluorescence emitted over a large solid angle of

roughly 0.2 steradians. Care was taken to slightly overfill the detector to insure

that the light collected was from atoms in the center of the pump region (these

atoms are more likely to be within the mode volume of the laser as well as the

pump beam).

In this section I will discuss the first-harmonic response of the intensity of

the laser and the intensity of the fluorescence from the interaction region in the

gain medium for a multimode standing-wave laser with a 5% output coupler.

In Fig 4.13 the in-phase first-harmonic response of the fluorescent intensity is

plotted. To fit the fluorescence data I assume that the detector measures some

fluorescence from atoms that are pumped by the argon pump laser but are not

in the interaction region of the dye laser. A small dc offset is added to the

theory to simulate this experimental complication. The solid lines correspond

to a single-mode theoretical fit using a value of r=87 ns for the cavity lifetime.

In Fig. 4.14 1 plot the response of the laser intensity to the modulated pump for

the same laser cavity. The single mode fit to the data was obtained using the

value r,=86 ns for the cavity lifetime. This cavity lifetime corresponds quite well

with that used to fit the spectral response of the fluorescence. We can conclude

that the intensity of the fluorescence from the interaction region of this laser
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also behaves as the single mode theory predicts.

To better appreciate the relation between the response of the fluorescent

intensity and the response of the laser intensity, I plot both responses versus the

modulation fequency 6w/2ir for the same pump parameter P, in Figs. 4.15(a) and

4.15(b). In Fig. 4.15(a) the in-phase first-harmonic response of the fluorescent

intensity is plotted together with the in-phase first-harmonic response of the

laser intensity versus the modulation frequency 6/27r. In Fig. 4.15(b) I plot

the in-quadrature response of the intensity of the fluorescence and that of the

intensity of the laser versus modulation frequency. This curve shows that the

phase lag of the laser response produces a phase lead in the fluorescent response.

The interpretation of these two figures [Figs. 4.15(a) and 4.15(b)] is that when

the dye laser can follow the modulations of the pump the atomic inversion is

constant in time (AC gain clamping). I consider this effect to be a manifestation

of AC gain clamping. Just as the DC response of the excited-state population is

clamped to the threshold value, the AC response is clamped to zero as long as the

laser intensity can follow the pump fluctuations. However, at higher modulation

frequencies the laser cannot respond to the fluctuations of the pump. The AC

response of the inversion becomes unclamped at these higher frequencies and the

atoms begin to respond to the modulations or fluctuations of the pump intensity.

To better connect the AM spectral behavior of the fluorescent and laser

intensities I have plotted both the bandwidth of the laser's response (squares)

and the bandwidth of the hole in the response of the fluorescence (triangles)

versus the pump parameter P on the same graph in Fig. 4.16. Notice that both

these data lie on the same line for the same cavity. This fit indicates a lifetime

-'c-90 ns. The solid line is the result of a linear regression analysis performed

on all the data shown in the figure.
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Fig. 4.13 The in-phase first-harmonic response of the intensity of the
fluorescence emitted from atoms in the interaction region of the gain medium vs
the pump modulation frequency &o/2,r. I plot the in-phase or x-channel output

of the lock-in amplifier vs frequency for a standing-wave laser with a 5% output
coupler for several values of the pump parameter 13 given in Eq. (4.15). The
curves, from left to right, correspond to 3=0.013, 3=0.019, 13=0.026,
0=0.033, and 0=0.038. The solid lines represent the single-mode best-

theoretical fit to all the data fit simultaneously. The cavity lifetime which gives
us this fit is 87 ns.
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Fig. 4.14 The in-phase first-harmonic response of the laser intensity I1

vs the pump modulation frequency 8co/21c. I plot the in-phase or x-channel

output of the lock-in amplifier vs frequency for a standing-wave laser with a 5%
output coupler for several values of the pump parameter 03 given in Eq. (4.15).

The curves, from left to right, correspond to P=0.0.008, --0.017, 0--0.025,

-.0.033, P3=0.041, and 1V0.048. The solid lines represent the single-mode

best-theoretical fit to all the data fit simultaneously. The cavity lifetime which

gives us this fit is 86 ns.
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Fig. 4.15(a) The in-phase first-harmonic response of the fluorescent

intensity and the in-phase first-harmonic response of the laser intensity vs the
modulation frequency &o/27t. I plot the in-phase first-harmonic response of

the fluorescent intensity, triangles, and the in-phase first-harmonic response

of the laser intensity, squares, for approximately the same p. -:,j parameter
0-0.018. The solid lines represent the single-mode best theoretical fit to the

data.
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Fig. 4.15(b) The in-quadrature first-harmonic response of the fluorescent

intensity and the in-quadrature first-harmonic response of the laser intensity
vs the modulation frequency &/2ic. I plot the in-quadrature first-harmonic

response of the fluorescent intensity, triangles, and the in-quadrature first-

harmonic response of the laser intensity, squares, for approximately the same
pump parameter -0.018. The solid lines represent the single-mode best-

theoretical fit to the data.
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Fig. 4.16 The modulation bandwidth (HWHM) of the in-phase first-harmonic

response of the fluorescent intensity and that of the in-phase first-harmonic
response of the laser intensity vs the pump parameter, 3. The HWHM values of

the data shown in Figs. 4.13 and 4.14 are plotted. The HWHM values of the

fluorescence curves are plotted using triangles; and the HWHM of the laser

intensity curves are plotted using squares. The solid line represents the result of a
linear regression performed on all the points shown. The slope of the line
corresponds to a cavity lifetime of 90 ns.
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To demonstrate the universality of these results (at least in dye laser sys-

tems) I have repeated these experiments for multimode ring and standing-wave

laser cavities for both high-Q cavities and cavities with a single 5% output cou-

pler. In Fig. 4.17 I plot the HWHM of the in-phase first-harmonic response of

the fluorescent intensity and that of the laser intensity for three of the cavities

studied. The HWHM data for the high-Q standing wave and the high-Q ring

cavities are labeled (b) and (c) respectively in the figure. The lifetimes associ-

ated with these cavities are rc=246 ns for the standing-wave cavity and rc=344

ns for the ring cavity. In the case of the high-Q cavities the dominant loss mech-

anism is probably the imperfect Brewster-angle reflection from the surfaces of

the dye jet. in the sianding-wave laser the modes encounter the dye jet twice

per round trip while in the case of the the ring cavities the dye jet is encountered

only once per round trip; consequently the ring cavity has less loss per round

trip and therefore a longer cavity lifetime. The cavities with output couplers

have approximately the same lifetime of 90 ns regardless of the cavity config-

uration (ring or standing-wave). The dominant loss mechanism in this case is

undoubtedly the output coupler which is encountered once per round trip for

both standing-wave and ring laser cavities. The data labeled (a) in Fig. 4.17

are for a unidirectional ring laser with a 5% output coupler (rT=85 ns). The

laser is forced to oscillate in one direction by retroreflecting the output from

one propagation direction back into the cavity. Retroreflection of one cavity

direction is effective in providing unidirectional operation with a contrast ratio

of at least 100:1 in these multimode lasers.

3. Hole burning in the absorption of pump modulations

In the previous section we saw that the laser carries away the modulation
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Fig. 4.17 The modulation bandwidth (HWHM) of the in-phase first-

harmonic response of the fluorescent intensity and the laser intensity vs the

pump parameter, 3. Plotted are the bandwidths of the responses for three

different cavity configurations. The squares represent the dye-laser intensity

response, the triangles represent the fluorescent intensity response, and the

solid lines result from a linear regression analysis of these data. The cavities
shown are (a) a unidirectional ring cavity with a 5% output coupler ('tc= 85 ns),

(b) a high-Q standing wave cavity ('rc=246 ns), and (c) a high-Q bidirectional

ring cavity ('tc=34 4 ns).
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energy for small modulation frequencies, while the fluorescence carries away

the modulation energy at higher modulation frequencies. If the absorption of

the modulation energy from the pump intensity were constant with respect to

modulation frequency the amount of modulation in the laser intensity at low

frequency would equal the amount of modulation in the fluorescent intensity at

higher frequencies. Even when we scale the modulation signal in the fluorescent

intensity by the appropriate factor to account for the incomplete collection angle,

the signal in the fluorescent intensity at high frequencies is less than the signal

in the laser intensity at low frequencies. The pump modulation energy is not

absorbed as efficiently at the higher frequencies. This decreased absorption of

pump modulations is due to the change in the response of the population to the

pump modulations. When a system follows a modulation, the absorption of the

modulation is affected. This effect has previously been observed in modulation

experiments carried out in passive absorbers. 28- 31

To demonstrate the origin of the detail in the absorption spectrum of the

pump modulation I write the equation for the spatial attenuation of the pump

intensity in a rate equation formalism:

d-I (tz = -ptzpgtz), (4.17)

where a is the inverse Beer's absorption length and pg is the ground-state popu-

lation. As I assumed in Eqs. (4.10a) the response of the ground-state population

is expressed in a harmonic series

00

pg(t,z) = E p9, 7(z)exp(inbw,.t), (4.18)

where pg,n(z) is the nth harmonic response of the ground state at the position

z in the material. Once the expression for ,(t) given in Eq. (4.9) is substituted
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into Eq. (4.17) 1 can equate terms of equal time dependence to get an expression

for the spatial dependence of the sideband intensity -of the pump, 6p,

d64p(z) = -a{6-p(z)p,,o(z) + Ip(z)Re[p,,i(z)]}. (4.19)
dz

The first term on the right hand side of Eq. (4.19) is the product of the AC

field component, H1p, and the DC absorption, apg,0 . The second term on the

right is the DC pump intensity, 7p, times the AC absorption, aRe[p,,1 ]. It is

this second term which gives rise to the spectral variation in the absorption of

the modulation energy. The population conservation equation

00 00

1 = p,,, exp(in6wt) + pn exp(in6wt), (4.20)
n=-oo n=-o

can be employed to rewrite Eq. (4.19) in terms of the excited-state population

harmonic components, p,,. The absorption equation takes the form

d6I,(z) = -,r{6Ip(z)(1 - po) - 7p(z)Re[pi(z)]. (4.21)}

This expression indicates that a change in the response of the excited-state

population to the modulation as a function of frequency induces a change in the

absorption of the modulation itself. Since the last term in Eq. (4.21) is negative,

the decreased fluorescent reponse at low modulation frequencies contributes to

an increase in the absorption of the modulation. The laser system is a more

efficient absorber of modulations when the atomic population can not follow the

modulations.

In order to perform the energy balance of the system the two outlet ports for

the modulation energy (the laser intensity and the fluorescent intensity) as well

as the inlet port (the absorption) must be considered in detail. In this section

I will describe the measurement we performed to verify that the absorption of
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the modulation is increased when the laser can follow the modulation and the

fluorescent intensity is clamped to a constant.

The same apparatus is used in this part of the experiment as was used

for the previous two measurements except that another detector is employed to

measure the transmitted intensity of the argon pump beam. The transmitted

argon is collected with a curved mirror and the collimated beam is then focused

onto a fast detector. A notch filter is used to pass only light at the frequency of

the argon laser (5145 angstroms) to filter out the fluorescence from the dye jet.

This insures that the spectral behavior of the fluorescent intensity will not affect

the measurement. The increased absorption does not cause the transmitted

modulation intensity to go to zero at low frequency since complete attenuation

is impossible. Consequently, this measurement is intrinsically noisier than the

previous two involving the laser and fluorescent intensities.

I study the intensity of the argon pump beam transmitted through the dye

jet for a standing-wave laser cavity with a 5% output coupler. The cavity with

an output coupler experiences this increased absorption to a greater extent than

the high-Q cavities. The reason for this is that the cavity with the output coupler

has a higher threshold and the atoms are more saturated at threshold. The depth

of the hole is related to the amount of saturation. After all, this increase in the

absorption is actually a tip within the 1/T1 hole for a collisionally broadened

system. 21 - 3 This total effect is shown in the theoretical plot in Fig. 4 .18 (a)

and 4.18(b). The response of the excited state population is plotted in Fig.

4.18(a). The hole in the low frequency response can be seen together with the

entire 11T, response. In Fig. 4.18(b) I have plotted the absorption spectrum of

the pump modulations by the laser gain medium as given by Eq. (4.21). These

curves in Fig. 4.18(b) directly mirror the effects seen in Fig. 4.18(a). It should
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Fig. 4.18(a) Spectrum of the first-harmonic response of the excited-state

population (fluorescent intensity). The spectrum of the first-harmonic response of

the excited-state population is plotted for frequencies large compared with 1/Ti.

This data is generated for T1 = 0.33 c, 10 = 0.5, and four different threshold pump

intensities: IPt = 1.0, 0.5, 0.2, and 0.1. The hole in the fluorescent response is a

hole within a Lorentzian of width 1/T(l+IP+10).
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Fig. 4.18(b) Spectrum of the absorption of modulation in the intensity of

the pump laser. The absorption coefficient in Eq. (4.21) is normalized with respect
to cc and then plotted as a function of modulation frequencies which am large

compared with 1/T1. The data are generated for T1 = 0.33ytc , 10 = 0.5, and four
different threshold pump-laser intensities: Ipthr = 1.0, 0.5, 0.2, and 0.1. These

data correspond to the same parameters used to obtain the plots in Fig. 4.18(a).

The "tip" in the absorption spectrum of the pump modulations is within a "dip" of
width l/T (I+10+ ).
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be apparant to the reader what I mean by the tip within the hole.

In Fig. 4.19 I have plotted the transmitted modulation spectrum of the

argon pump beam. Shown are the AM spectra for four different pump val-

ues ranging from 0.9% above threshold to 1.9% above threshold. The solid

line curves represent the best theoretical fit to all the data fit simultaneously.

This data is intrinsically noiser than the laser spectra and the fluorescent in-

tensity spectra since this measurement is background limitted. The data shows

increased transmittance of modulation at higher frequencies. This increased

transmittance is due to the decreased absorption of pump modulations when

the atomic population is capable of responding at the modulation frequency.

F. Conclusion

I have employed AM spectroscopic techniques to study the behavior of lasers

operating near the first threshold. In particular, this chapter has focused on the

comparison of single-mode four-level laser rate equations with the behavior of

multimode dye lasers. I find that the total intensity of these multimode dye

lasers responds to weak amplitude modulation of the pump intensity the same

way that the intensity of a single mode laser does. This agreement is a good

example of the synergetic behavior of the multiple modes in the multimode

laser." The many modes cooperate to maintain a total intensity which behaves

according to single-mode laser theory, even though the underlying behavior of

the individual modes may be much more complicated. McMackin et al." and

Atmanspacher et al." show that the individual modes in a multimode laser

can undergo full scale chaotic fluctuations even when the total intensity is quite

calm.

In the theoretical section of this chapter I derive a theory based on four-
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Fig. 4.19 Transmission of modulated argon pump intensity vs pump modulation
frequency Wc/2t. I plot the in-phase first-harmonic of the intensity of the argon

pump beam after it has passed through the interaction region of the gain medium.

The curves, from left to right, correspond to 13=0.009, 13=0.014, 13=0.017, and

1-0.019.
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level rate equations for the behavior of the laser intensity and the excited-state

population of the atoms in the gain medium in response to a weak amplitude

modulation of the pump intensity. The theory demonstrated that the laser be-

haved as a low-pass amplifier of pump fluctuations. Furthermore, the bandwidth

of response of the laser to these fluctuations is equal to the product of the pump

parameter, f, and the reciprocal of the passive-cavity lifetime, r. I also showed

that this bandwidth, P/7-, is equal in magnitude to the stability exponent for

the on-solution of the laser rate equations above threshold. I propose AM spec-

troscopy in lasers as an accurate method for determining the stability exponent

of the laser equation! Furthermore, if you can accurately measure the stability

exponent and determine the pump parameter then the cavity lifetime, r,, can

be determined as well.

In the first experimental section of this chapter I reported experiments

carried out with high-Q standing-wave and bidirectional-ring dye lasers. For

each of these cavity comfigurations I directly measure the passive cavity de-

cay rates, i/r, and compare these measurements with the cavity decay rates

for these lasers determined with a modulation measurement. The agreement

between these two measurement techniques demonstrates that the single mode

laser theory is accurate in describing the behavior of the total intensity of these

multimode lasers subjected to weakly modulated pump intensities. I also employ

these AM techniques to measure the passive-cavity devay rates, 1/r,, of some

cavities with output couplers. These cavities typically have lifetimes less than 1

lj,;. Thp AM techniques has been used to measure a cavity decay rate which is

outside the bandwidth capabilities of our detectors. This is simply accomplished

by operating the laser near threshold where its reponse is slowed by a factor of

f- Then, the rapid cavity decay rate can be inferred by scaling the resulting
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time constant by 1/pl.

The other prediction of the four-level rate equation theory is that the AM

spectrum of excited-state population of the gain medium displays a hole at

zero modulation frequency. That is to say that the excited-state population

remains immune to modulations which the laser intensity can follow. I con-

sider this behavior to be evidence of dynam' inversion clamping. Up until

now inversion clamping has been interpreted as an adiabatic phenomenon. 26 In

the presence of low-frequency pump fluctuation the excited-state population re-

mains constant while the system dissipates absorbed modulation in the form of

a fluctuating laser intensity. The laser intensity cannot follow high frequency

pump-modulations; consequently the population does not remain constant in the

presence of these rapid fluctuations. The laser seems to act as a pump-intensity

noise eater keeping the population constant with respect to fluctuations which

the laser intensity can follow.

In the experimental section of this chapter I measure the response of the

fluorescence emitted from atoms in the interaction region of the dye laser sys-

tems. The total fluorescence is a measure of the excited-state population for a

four-level laser. I demonstrate that the width of the hole at DC in the AM spec-

trum of the fluorescent intensity corresponds quantitatively to the Lorentzian

low-frequency response of the laser intensity. These measurements are carried

out in both high-Q lasers and lasers with output couplers in ring and standing-

wave configurations. The dynamic inversion clamping phenomenon which the

theory predicts has been experimentally verified.

At this point I perform an energy balance of the modulation energy in

and out of the system. To do this, I consider both input and outpat ports of

modulation energy into and out of the laser system. The two exiting ports are
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the laser intensity and the fluorescent intensity. However, consideration of only

these two ports does not lead to conservation of m(dulation energy. I have to

include the fact that the absorption of modulation energy into the system is not

constant over frequency. The behavior in the response of the population induces

changes in the absorption spectrum of modulation energy from the pump. In

the final sections of this chapter I report a measurement of the modulation in

the intensity of the argon pump beam after it has passed through the dye jet.

The spectrum of the transmitted pump intensity reveals that less modulation

energy is absorbed by the gain medium at high modulation frequency where the

population reponds to the modulations. The population absorbs modulations

less efficiently when it it can repond to the modulation. This effect has also

been observed in the dynamics of passive absorbers. 2 8- 3 1

I am compelled to qualify the interpretation of these results. The lasers

I have reported on were all extremely broadband. The time-averaged spectra

of these lasers consisted of hundreds of longitudinal modes at even the lowest

of pump settings. When the number of modes is not very large, the modes

may couple to produce deterministic oscillations of the total intensity of the

laser in addition to responding to the multiplicative fluctuations of the pump

intensity.36 Another restriction which should apply to the interpretation of these

results is that the modulation frequency was always much less than the frequency

separation between adjacent longitudinal cavity modes. When the modulation

frequency is comparable to the modal frequency separation and the modulation

amplitude is large, the modes may couple to produce mode locking or deter-

ministically chaotic fluctuations of the total intensity.16 Furthermore, the gain

medium in the dye-jet dye lasers used in these experiments are extremely thin

(ie. 100 pm). A thin gain medium allows modes which differ substantially in
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frequency to maintain a constant phase difference throughout the gain medium.

This allows many possible combinations of laser modes to uniformly saturate

the gain medium. The laser cannot distinguish between the uniform saturation

of many simultaneously lasing modes and that of a single traveling-wave mode.

Therefore the multimode standing-wave lasers studied are not less efficient due

to spatial hole burning effects.

I have analyzed theoretically and experimentally the flow of modulation

through the input port (the absorption from the pump intensity) and both

output ports (the laser intensity and the fluorescent intensity) of various laser

systems. Modulation spectroscopy has lent itself to a quantitatively exact study

of critical slowing down in the behavior of dye lasers operating near threshold.

AM techniques have been used to measure the stability exponent of lasers with

several different cavity configurations. A hole in the response of the fluorescent

intensity to pump modulations has been observed. This spectral hole is a man-

ifestation of dynamic inversion clamping. Furthermore, the spectral response

of the atomic population induces a change in the ability of the atoms in the

interaction region of the gain medium to absorb pump modulations. All three

ports of modulation energy in a laser display interesting spectral behavior.
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SUMMARY

The goal of this thesis was to provide an explanation of modulation inter-

actions in various optical systems. I have presented an account of experimental

work performed in a variety of systems: two-level atom; a multi-level laser am-

plifier; and a dye-laser system. In each of these systems modulation interactions

are used to perform a frequency-domain measurement of some systematic time-

constant or parametric interaction.

In chapter 2, the interaction of a 100% AM field with an ensemble of two-

level atoms was studied. The interaction revealed the existence of several para-

metric resonances between the Rabi frequency and the modulation frequency

of the bichromatic field. The absorption of the modulated field is increased

whenever the Rabi frequency is equal to the modulation frequency or a higher

harmonic of the modulation frequency. When the Rabi frequency and the modu-

lation frequency are large compared with the natural linewidth of the transition,

the nonlinearity of the interaction produces harmonic overtones of the modula-

tion frequency in the response of the atomic variables. These overtones can lead

to parametric resonances when they coincide with the Rabi frequency of the

atomic medium. Since the field is modulated the system is always in a sort of
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transient regime in which the Rabi oscillations are constantly being reinitiated.

In chapter 3 I treated the case of a collisionally-broadened four-level laser

amplifier interacting with a weakly modulated pump field (the pump laser was

tuned to the pump transition of the amplifier) and a probe field tuned to the

inverted transition of the amplifier. The spectrum of the transfer of modu-

lation from the pump-laser intensity to the probe-laser intensity was studied.

Although the lasers do not interact with a common atomic level, modulation

energy is transferred from the pump-laser intensity to the probe-laser intensity

via population oscillations. The modulat- )n bandwidth of the laser amplifier is

equal to the sum of the spontaneous decay rate of the inverted transition and the

stimulated rates induced by the pump and probe lasers. Since the modulation

transfer rate is actually the rate at which population oscillations cycle through

the entire circuit of energy levels, I conclude that modulation spectroscopy can

be used to isolate any hidden slow decay rates which would diminish this mod-

ulation transfer rate.

The data collected in chapter 3 was first compared with a simple four-level

rate equation model and then with a more complicated and accurate model

based on what is known about the energy levels of alexandrite. In this second

model I included the thermal pump rate which takes population from the storage

level to the upper vibronic level. This thermal equilibration process is central to

the operation of an alexandrite laser and gives rise to increased lasing efficiency

at higher temperatures. I used this thermal-pump theory to arrive at the tem-

perature increase coefficient per unit pump intensity. The temperature increase

occurs since the pump photons are not completely converted into laser or fluo-

rescence photons. This coefficient is a relevant parameter to understanding the

operation of an argon-pumped or a flash-lamp-pumped alexandrite laser.
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In chapter 4 1 examined the near-threshold behavior of multim,4A, dye lasers

with a weakly amplitude-modulated pump intensity. Standing-wave and ring

lasers with and without output couplers were studied. The predictions of single-

mode laser theory were compared with the behavior of multimode lasers in

this chapter, and the total intensity of multimode lasers were found to behave

according to the predictions of single-mode laser theory. This phenomenon is

an example of synergetic, or cooperative, behavior in a nonlinear system with

several degrees of freedom. Although the individual modes may, themselves,

undergo full scale intensity fluctuations, the total intensity follows the modulated

gain in a manner identical to a single-mode laser.

I demonstrated that modulation spectroscopy can be used to measure rapid

laser-cavity decay rates. The modulation bandwidth of a laser is the product

of the pump parameter (the percent above threshold) times the passive-cavity

decay rate. The cavity decay rate of two high-Q cavites were directly measured

by monitoring the exponential decay of laser intensity from the cavity after the

pump intensity was extinguished. This direct measurement of the cavity decay

rate r, was compared with the decay rate derived from fitting the modulation

data. The agreement between these two methods of determining r, was within

a 5% margin of error. I also used the modulation measurement to determine

the decay rate of some laser cavities which included an output coupler. The

lifetime of the laser field in these cavities was less than the response time of

any of the equipment we have available in the laboratory. However, we were

able to accurately determine these decay rates using the AM measurement. By

operating the laser near threshold, the dynamics are critically-slowed enough

so that our equipment could accurately measure the systematic time constant.

The systematic time constant is then scaled by the pump parameter to arrive at
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a value for the passive-cavity decay rate of these cavities with output couplers.

Another consequence of this research is that the concept of inversion clamp-

ing can now be interpreted as a non-adiabatic phenomenon. I show that just

as the steady-state inversion (the inversion of a four-level laser is equal to the

excited-state population) of a laser is clamped at the threshold value once the

lasing threshold is reached, the ac response of the excited-state population is

zero, within the modulation bandwidth of the laser. Over a small bandwidth,

the laser acts as a pump-intensity noise eater, keeping the excited-state popula-

tion constant, and dissipating pump fluctuations in the form of laser intensity.

At higher rates the laser cannot follow the pump fluctuations, and the popula-

tion begins to follow the modulations of the pump laser intensity emitting the

modulation energy in the form of a fluctuating fluorescent intensity.

A further consequence of these dynamics is that the absorption of the pump

modulations is affected by the response of the population. The absorption of

the modulations is diminished whenever the population itself can follow the

them. This phenomenon is a manifestation of the physics I reported in chapter

3; population oscillations affect the transfer of modulation through an optical

system and also affects the absorption of the modulation by the system.

I have extended the application and usefulness of modulation spectroscopy

in this thesis. However I believe that there is more work to be done in this area.

It seems that more questions are raised than are answered. For instance, what

is the response of multilevel radiatively-broadened atomic systems to the strong

modulation interaction studied in chapter 2. Also, in chapter 4 I studied the

response of dye lasers which are strongly collisionally broadened. What is the

response of a laser system which can only be adequately described by keeping

the equations for the atomic polarization, the atomic inversion, and the field
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equation?

In closing, I have some advice. If all else fails, try modulation techniques,

and use a lock-in amplifier.
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Appendix A

BLACKBODY PHONON IRRADIANCE

In this appendix I evaluate an expression for the total blackbody flux ca-

pable of pumping population out of the storage level in the alexandrite crystal

and into the upper vibronic level. This expression is evaluated as a function of

temperature. The storage level is separated from the upper vibronic level by

800 cm - 1 . I evaluate the total blackbody flux of energy 800 cm - 1 and above

since only these phonons are energetic enough to pump population into the vi-

bronic transitions. I start this calculation with the expression for the blackbody

irradiance per unit frequency

L (87rh) 3 (AI)
3 ) -exp(hv"kT) - 1'

where C is a constant, v is the frequency of the radiation, h is Planck's constant,

k is Boltzmann's constant, and T is the absolute temperature. Since we are

interested in evaluating this integral over frequencies v > 800cm - ', and at

temperatures T ; 300°K the exponential in the denominator of Eq. (Al) is
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much larger than unity so the irradiance can be rewritten

L, Sirh hi' (A2)

Now I integrate the expression given in Eq. (A2) from the minimum fre-

quency vo (the frequency vo corresponds to 800 cm - 1) to infinity

+ 3 33! v3-"v3 exp(v) = exp(4vo) I>-) (3 n)!On+ ,  (A3)

Afo n -=O

where 4 = -h/kT. In the limitting case that the integration limit vo goes to

zero frequency this integral takes on the familiar Wien's law T 4 dependence.

This integral will be used to give the temperature dependence of the blackbody

radiation within the alexandrite crystal as described in chapter 3 of this thesis

3 3 V3 - n(A4)

L,,OeXP(V.) (_,) (M



Appendix B

MODULATION OF THE PHONON IRRADIANCE

IN ALEXANDRITE

In this appendix I use the expression from appendix A given in Eq. (A4) for

L, 0 (the integrated phonon irradiance cabable of inducing a population transfer

from the storage level to the upper vibronic level) to derive an expression for

the modulated phonon irradiance due to heat absorption from the pump laser.

To do this I first derive an expression for the heat absorption in the interaction

region in the crystal. Next, the temperature is related to the heat absorption

by invoking simple thermodynamic arguments. The temperature is assumed to

depend linearly on the rate of heat absorption (this assumption is consistent with

the fact that the sample is convectively cooled). Finally I apply the modulated

temperature to the expression for the irradiance and linearize this expression to

yield the modulated phonon irradiance capable of pumping population into the

vibronic laser levels. This expression will be applied to Eq. (3.19) in chapter

3. We begin with the expression for the integrated irradiance as a function of
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temperature

L,o \-- exp[O(t)vo] E(-1)" 3 )¢t. ,
C3 /n=O (3-

where 0(t) = -h/kT(t). Since we are interested in the temperature dependence

of this expression I rewrite Eq. (BI) as

L,,o  -(- h ) exp (hv )(AT(t) + 3BT(t)2 + 6CT(t)3 + 6DT(t)4 ), (B2)

where

* = v03(B3a)

B =0 (k) 2  (B3b)

C =Vo ( ,)3, (B3c)

and

D k .4 (B3d)

Now, it is necessary to derive an expression for the temperature of the

interaction region in the crystal including heating due to the pump laser. The

interaction region is heated by the absorption of photons from the pump laser.

Pump absorption takes place from the ground state and from the excited state.

Part of the energy absorbed by the atoms from the ground state is dissipated as

fluorescence, while all the energy absorbed by the atoms in the excited state is

dissipated as heat. The energy released in the form of fluorescent emission can

be represented by including a quantum efficiency multiplier. The heat due to

pump absorbtion can be represented as

QOC oafIA(t)P,(t) + OIA(t)p3(t), (B4)
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where a is the unsaturated ground state absorption coefficient, C is the quantum

efficiency of the heat generation (eg. the fraction of e,:-ch quanta of pump photon

converted into heat) when the pump photon is absorbed from the gound state,

and the factor f# represents the unsaturated excited state absorption coefficient.

The first term in Eq. (B4) is the heat generated due to ground state absorption

and the second term is the heat generated due to excited state absorption. I only

consider the population in level 3 for excited state absorption since very little

population resides in the excited vibronic state whose decay rate is so rapid.

These three coefficients, a, P, and c are known quantities (see references 18-23

in chapter 3).

At this point it is helpful to consider the energy balance of heat transfer in

and out of the crystal. In general, heat is absorbed by the sample from the pump

(actually light quanta are absorbed and converted into heat) and then the heat

is removed from the interaction region via conduction into other parts of the

alexandrite crystal and by convection into the air In fact, all the heat absorbed

from the pump laser is eventually removed from the crystal via convection (ra-

diation is ignored since it is inefficient at these low temperatures). The rate

of convective removal of heat is merely proportional to the difference between

the temperature of the heated object and the temperature of the surrounding

fluid at large distances from the object. Therefore, in the stationary state the

increase in the temperature of the crystal over room temperature is proportional

to the rate heat is absorbed by the crystal. The temperature of the crystal can

be written as

T(t) = T,oo + ¢IA(t)[afpg(t) + fp 3 (t)], (B5)

where the factor 4 relates the rate of heat transfer into the interaction region to
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the temperature increase. This factor depends on the geometry of the sample,

the bulk conduction coefficient and the convection coefficient. In practice I will

determine the coefficient, 0 by fitting the data. The value of this treatment

is in the evaluation of this coefficient which relates the pump intensity to the

temperature in the interaction region.

Since the response of the population in the ground state and the excited

states (levels 2 and 3) contain both DC and harmonic terms it is convenient at

this point to rewrite Eq. (B5) as

T(t) = To + [6Texp(ibwt) + C.C.], (B6)

where To is the DC temperature

TO = Tr.om + ad(%(afP,,0 + OP3,0), (B7)

and 6T is the modulated component of the temperature

bT = [ae(pg,o IA + p.,i Ix) + P(p3,oIA + p3,IA)). (Bg)

The C.C. in Eq. (C6) represents the complex conjugate.

The expression for the temperature T(t) given in Eq. (B5) is substituted

into the expression for the phonon irradiance given in Eq. (B1). When this is

done and the expression is linearized with respect to the modulated component

of the temperature 6T the result is

W(t) = ) exp \ kTo ] (ATo + 3BT2 + 6CT3 + 6DTo) (B9)

+ 6T ( kA0 + 4A + 12BT0 + 24CT2 + 24DT0) exp(iowt) + C.C.] .

This expression for the time-dependent irradiance is used in chapter 3 to evaluate

the time-dependent thermal pump rate Rr(t).



Appendix C

STABILITY ANALYSIS OF THE

FOUR-LEVEL LASER RATE EQUATIONS

In this appendix I will review the stability analysis of the four-level laser

rate equations. The stability analysis will be carried out for both the above-

threshold and the below-threshold solutions to these equations. We start with

the rate equations for the excited-state population of the laser transition p,

d (ltp= - (I + I + I,)P + -LI, (C.1)

and the equation for the intracavity dimensionless intensity of the laser I,

dt

These equations are discussed in detail in Chapter 4. The steady-state solutions

of these equations which were found in Chapter 4 will be referred to as I., for the

laser intensity and p,, for the atomic population. If we imagine that the system

is prepared in the steady-state save for a small time-dependent perturbation of

the variables we can write these solutions as

l(t) = I., + 61(t), (C.3a)
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for the laser intensity, and

p(t) = p.- + 6p(t), (C.3b)

for the atomic population. The time-dependent perturbations are considered

small in order to linearize the equations. Upon substituting the expressions

given in Eqs.(C.3a) and (C.3b) into the population rate equation, Eq.(C.1), we

get

d[Pss + 6p(t)] = -- [p.. + 5p(t) {1 + [I.. +- (t)] +I,} + I+ , (C.4)

which can be rewritten as

d d 11
-po, + -[6p(t)] - 1 + I.. + I)p.o + -Ip

1 1
- -p.,6(t) - y(l + I., + Ip)bp(t)

- - p(t).r(t). (C.5)

The first term on the left hand side of Eq. (C.5) is zero since the steady-state

solutions are constant. The first line on the right hand side of Eq. (0.5) is equal

to zero for both sets of steady-state solutions. The third line of the Eq. (C.5) is

neglected since it is of second order in the perturbative quantities. The remaining

terms represent the linearized equation for the perturbed atomic population,

d [/ o t ] = 1 1 _
T -p(t)] p.,(t) - T(l + I.. + I,)bp(t). (C.6)

In a similar manner Eq. (C.2) can be solved to obtain a linearized equation of

motion for the perturbed intensity

T[bI(t)] = gI.,.bp(t) + (g9p - 1) 1(t). (C.7)
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These linearized equations can be solved by assuming a time dependence of the

perturbation of the form:

,p(t) = 6pexp(Ai), (C.8a)

and

HI(t) = Iexp(At), (C.8b)

for the population and the intensity respectively. When we substitute these

expressions into the linearized equations [Eqs. (C.6) and (C.7)] the following

two eigenvalue equations result:

(1 ~ ~ 1 =0. P)-A T- eab
T, +Ie, 0)A.p- (C.9)

gI..

For a non-trivial solution of this set of equations the determinant must be

equal to zero. Solving for the determinant and setting it equal to zero yields a

quadratic equation for the eigenvalue A,

,%2 + X[L ( 1 + I., + I ) + - - gp"]

+ -(1 + I, + IP,) - T(1 + 4P) = 0. (C.10)

The eigenvalues can be evaluated for both sets of steady-state solutions to

Eqs. (C.1) and (C.2). The steady-state solutions are fouAd by setting the time-

derivatives in the rate equations to zero. The two solutions are for the laser-on

state and the laser-off state. First I evaluate the eigenvalues for the laser-off

solution for which

I's = 0, (C.lla)

and
Ip (C.11b)P°=1 + -p"
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For this solution we obtain two eigenvalues:

Al = -T(1 + Ip), (C.12a)

and

\ 2 = I 1 (C.12b)

The eigenvalue labeled A1 is always negative and therefore leads to no instability.

It is the second eigenvalue, A2 , which gives rise to an instability for values of

the pump intensity which are greater than the threshold value. The off solution

becomes unstable for
1

p > p,thr - . (C.13)

The interpretation of this is that the laser stays off if the pump intensity is kept

below the threshold value. Conversly the laser is not in a stable state if it is off

when pump intensity is above the threshold value.

Next we can examine the stability of the laser-on steady-state solutions to

Eqs. (C.1) and (C.2). The steady-state solutions are

I.$ = Itr1 , (C.14a)f,,thr

for the laser intensity and
1

pa. s -, (C.14b)gTc

for the excited-state population. When these relations are substituted into the

eigenvalue equation, Eq. (C.10), the result is

T, \pthr + X, + \'P.h r 0. (C.15)
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This quadratic equation has two solutions:

V2T, . 1, 1 (C.16)
1 )'(' Pl~hr /~ r 1)'i

The solution with the minus sign is always negative and leads to no instability

for this steady-state solution. It is the solution with the plus sign which has the

propensity to go positive and indicate an instability. Before proceeding further,

it is helpful to recognize that the last term inside the square-root bracket contains

the pump parameter given by:

= - 1, (C.17)
Ip,thr

which is small when the laser is close to threshold. Furthermore, dye lasers

operate in the good cavity limit (eg. r, > T, T2 ). Therefore, the last term in

the radical in Eq. (C.16) is small. To make use of the fact that this term is

small, the expression inside the radical can be rewritten as:

'Ip-f~I, -2p +I (C.18)

T= ~~Ip,thr 'T, \J1 \7 ± ).(C18

This expression is now of the form lv1-z, which for small x is

T ... = +(C.19)

This small argument expansion may now be applied to the radical expression

in Eq. (C.18) and the results substituted into the eigenvalue expression in Eq.

(C.16). The eigenvalue becomes

,, + ,, ,--" + I.+P
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In the limit of nonsaturating pump and laser intensities this eigenvalue is equal

to the product of the laser intensity and the cavity decay rate. The characteristic

passage time of the system is slowed as the laser intensity goes to zero. If the

system is perturbed away from the steady-state solution very close to threshold,

it takes a long time to return to the steady-state. This behavior is called critical

slowing down.


